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Abstract

Many engineering application problems use optimization algorithms in conjunction with
numerical simulators to search for solutions. The formulation of relevant objective func-
tions and constraints dictate possible optimization algorithms. Often, a gradient based
approach is not possible since objective functions and constraints can be nonlinear, non-
convex, non-differentiable, or even discontinuous and the simulations involved can be com-
putationally expensive. Moreover, computational efficiency and accuracy are desirable and
also influence the choice of solution method.

With the advent and increasing availability of massively parallel computers, computa-
tional speed has increased tremendously. Unfortunately, the numerical and model com-
plexities of many problems still demand significant computational resources. Moreover,
in optimization, these expenses can be a limiting factor since obtaining solutions often re-
quires the completion of numerous computationally intensive simulations. Therefore, we
propose a multifidelity optimization algorithm (MFO) designed to improve the computa-
tional efficiency of an optimization method for a wide range of applications.

In developing the MFO algorithm, we take advantage of the interactions between mul-
tifidelity models to develop a dynamic and computational time saving optimization algo-
rithm. First, a direct search method is applied to the high fidelity model over a reduced
design space. In conjunction with this search, a specialized oracle is employed to map the
design space of this high fidelity model to that of a computationally cheaper low fidelity
model using space mapping techniques. Then, in the low fidelity space, an optimum is
obtained using gradient or non-gradient based optimization, and it is mapped back to the
high fidelity space.

In this paper, we describe the theory and implementation details of our MFO algorithm.
We also demonstrate our MFO method on some example problems and on two applications:
earth penetrators and groundwater remediation.
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Chapter 1

Introduction and Motivation

With the advent of massively parallel computers, computational speeds have increased
tremendously. Unfortunately, the comparable scaling of numerical and model complex-
ities in combination with overburdened machines can still result in long compute times.
Moreover, many of the optimization problems that arise in engineering require a large
number of computationally expensive physics-based software simulations. In some cases,
the computational expense of a full-physics simulation may make the direct coupling of the
simulation code to numerical optimization software infeasible.

At Sandia National Laboratories, parallel computing is an essential and well inte-
grated function of many of the physics application codes. Moreover, the Sandia developed
DAKOTA optimization software toolkit was designed to exploit massively parallel com-
puters and take advantage of multilevel parallelism to alleviate computational times [10].
Since parallelism alone may not sufficiently reduce compute times, intelligent solution
techniques and algorithms are critical for overall optimization efficiency. Thus, DAKOTA
includes optimization strategies such as surrogate-based optimization (SBO). The SBO
method is a two-level multifidelity optimization approach [14]. A surrogate or low fidelity
model is optimized using periodic corrections from the high fidelity model. The goal of
SBO is to improve the overall computational speed by using the simpler (and less compu-
tationally expensive) surrogate model. Although the SBO approach has been successful, its
design precludes its application to certain problems. For example, the SBO method requires
that the design variables are equivalent (one-to-one mapping) between high and low fidelity
models. Therefore, the goal of our project was to design a dynamic multifidelity-multilevel
hybrid optimization thereby expanding the capabilities of the DAKOTA toolkit.

To reach our ultimate goal of developing and implementing the software and algorithms
for a multifidelity-multilevel hybrid optimization scheme, our original plan was to expand
upon the current SBO strategy in DAKOTA. As with SBO, our idea was to use a low
fidelity model to drive the optimization of the high fidelity model. For example, given two
low fidelity models that capture particular physical trends (e.g. one displacement and the
other acceleration) of a high fidelity model, the appropriate low fidelity model could be
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used to drive the optimization of the high fidelity model at a given iteration. Unfortunately,
two issues arise in this approach:

1. At each iteration, DAKOTA optimizes over all the design variables at once. It is not
currently possible to drive the optimization of design variables separately within a
single iteration. Significant changes to DAKOTA would be required to allow for this
feature.

2. The number of design variables in the high fidelity model must be equal to the num-
ber of design variables in any/all low fidelity models.

By definition, low fidelity models are less descriptive than their high fidelity counterparts.
Thus, high fidelity models may include design variables that are not a part of their corre-
sponding low fidelity models (e.g. another physical dimension). Therefore, the optimiza-
tion of the high fidelity model cannot be restricted to identifying only those variables that
are also present in the low fidelity model. Given these difficulties, we opted to formulate
an approach to multifidelity optimization (MFO) independent of the existing SBO method.

The theoretical details of our MFO scheme are discussed in Chapter 2. Two of the most
important features of our approach are
 The algorithm is provably convergent (see Section 2.3).
 The number of design variables in the models of varying fidelity need not be equiva-

lent in number or type. (see Section 2.2).

Designing a scheme that is provably convergent is important because the existence of con-
vergence lends credibility and separates our approach from heuristic methods with no the-
oretical basis. Supporting models with different numbers of design variables expands the
applicability of our method, particularly within Sandia. At Sandia, the design of physics-
based codes often begins with a research level code that includes robust and complex
physics but simple mathematical models. The limitation of this type of code is often a
simplistic geometry and/or the lumping of physical processes (e.g. averaging over spatial
dimensions). Therefore, for critical applications, research codes are improved by adding
more complex mathematical models, solver algorithms, software infrastructures, etc. The
result is diverse set of software models for the same physical process with different com-
plexities and compute times. Our MFO approach lends itself particularly well to this hier-
archical development process. Often, as codes are developed, design spaces become better
defined and design variables are added. Appropriate MFO schemes for applications that
involve such codes will not place any limitations on the number of design variables in each
model.

In this report, we describe the development, implementation, and testing of an algorith-
mic approach to MFO. Our method takes advantage of interactions between multifidelity

14



models to develop a dynamic and computationally time-saving algorithm. In Chapter 2,
we review the theoretical basis of our method and describe how existing convergence re-
sults can be applied to our MFO algorithm. Chapter 3 includes all the details related to
implementation. A set of test problems and the results we obtained are given in Chapter
4. Testing of our MFO algorithm is expanded to engineering applications in Chapter 5.
We explain two problems and exhibit the success of our MFO algorithm in solving them.
Finally, in Chapter 6, we give some final thoughts. Note that the Appendix includes an
example of the scripting process used in the implementation of one of our examples.
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Chapter 2

Developing a Multifidelity-Multilevel
Hybrid Optimization Scheme

The development of our MFO scheme is based on the theory of a direct search algorithm
scheme and space mapping techniques.

2.1 Asynchronous Parallel Pattern Search (APPS)

The MFO approach described in this paper incorporates a derivative-free optimization
method called Asynchronous Parallel Pattern Search (APPS) [18, 19]. The APPS algo-
rithm is part of a class of direct search methods which were primarily developed to address
problems in which the derivative of the objective function is unavailable and approxima-
tions are unreliable [37, 25]. Pattern searches use a predetermined pattern of points to
sample a given function domain. It has been shown that if certain requirements on the form
of the points in this pattern are followed and if the objective function is suitably smooth,
convergence to a stationary point is guaranteed [9, 24, 35].

The majority of the computational cost of pattern search methods is the function evalua-
tions, so parallel pattern search (PPS) techniques have been developed to reduce the overall
computation time. Specifically, PPS exploits the fact that once the points in the search pat-
tern have been defined, the function values at these points can be computed simultaneously
[8, 34]. The APPS algorithm is a modification of PPS that eliminates the synchronization
requirements. It retains the positive features of PPS, but eliminates processor latency and
requires less total time than PPS to return results [18]. Implementations of APPS have
minimal requirements on the number of processors and do not assume that the amount of
time required for an objective function evaluation is constant or that the processors are
homogeneous.

In this work, we consider the specific APPS algorithm as described in [19]. It is a
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variant on generating set search as described in [20] and is provably convergent under mild
conditions [21, 22, 19]. Omitting the implementation details, the basic APPS algorithm
can be simply outlined as follows:

1. Generate a set of trial points T to be evaluated.

2. Send the set T to the conveyor for evaluation, and collect a set of evaluated points, E,
from the conveyor. (The conveyor is a mechanism for shuttling trial points through
the process of being evaluated.)

3. Process the set E and see if it contains a new best point. If E contains such a point,
then the iteration is successful; otherwise, it is unsuccessful.

4. If the iteration is successful, replace the current best point with the new best point
(from E). Optionally, regenerate the set of search directions and delete any pending
trial points in the conveyor.

5. If the iteration is unsuccessful, reduce certain step lengths as appropriate. In addition,
check for convergence based on the step lengths.

A detailed procedural version of APPS is given in [15], and a complete mathematical
description and analysis is available in [19]. APPSPACK version 4.0 is a software imple-
mentation of this algorithm. In Section 3.2, we discuss some of its basic implementation
details and describe the customizations made specifically for our MFO procedure.

2.2 Space Mapping

Space mapping [4, 5] is a numerical technique that allows linking design spaces of models
with similar functionality (i.e. modeling the same physical process), but varying fidelities
(i.e. differing dimensions, differing physics assumptions). In this report, we refer to these
models of differing fidelity as the high fidelity model and the low fidelity model. The high
fidelity model is considered to be the “best” or more exact model but is computationally
more expensive. In contrast, the low fidelity model is less exact but requires fewer compu-
tational resources. The relationship between these two models can be defined by a mapping
P such that the high fidelity model design space, �xH , and the low fidelity design space, �xL,
are related via the equation�xL � P

� �xH � (2.1)

such that

fL
�
P
� �xH �	�� fH

� �xH � (2.2)

17



where fH and fL are the high and low fidelity model responses respectively. Equation (2.2)
can be restated as a minimization problem of the form

min

�
N

∑
i � 1 � fL

�
P
�
xi ����� fH

�
xi � � 2 � (2.3)

where N is the number of high fidelity design points xi. (This is done with a least square
technique, see Section 3.6.1 for details.) Finding an appropriate formulation for P is highly
dependent on the problem type. One mapping that we have consistently used is of the form

P
�
xH �� αxβ

H � γ (2.4)

where α, β, and γ are determined by solving (2.3). This formulation is in no way a complete
and generic mapping, nor is it our only option, but it is an appropriate starting point for our
research.

It is also important to note that �xH is not restricted to being equivalent to �xL. This is an
important feature of space mapping since it is often the case that a low fidelity model has
fewer design parameters to characterize than a corresponding higher fidelity model. Many
MFO schemes require a one-to-one correspondence between the design space of models.
We incorporate space mapping into our MFO approach to eliminate this restriction. Section
4.2 includes examples of models with an unequal numbers of design variables and their
corresponding mappings.

2.3 The APPS/Space Mapping Scheme

The APPS/Space Mapping approach to MFO can be described in terms of two loops– an
outer loop and an inner loop. The main purpose of the outer loop is the application of
the APPS algorithm to the high fidelity model. However, it also has the added task of
maintaining a set of trial points and their corresponding response values. These are used by
the inner loop to map the high fidelity space to the low fidelity space. The inner loop then
uses this space mapping to optimize the low fidelity model. The complete MFO procedure
is:

1. Start the outer loop.
 Optimize the high fidelity model fH using the APPS algorithm.
 While optimizing, collect a set of N pairs
�
xi � fH

�
xi ���

2. Start the inner loop

18




 Using the N high fidelity response pairs collected by the outer loop, obtain the
space mapping parameters. In other words, find α, β, and γ such that

N

∑
i � 1 ��� fL

�
α
�
xi � β � γ ��� fH

�
xi � ��� 2 � (2.5)

is minimized (see Equation 2.3). See Section 3.6.1 for a discussion of the least
squares optimization algorithm applied to solve (2.5).
 Optimize the low fidelity model within the space mapped high fidelity space by
minimizing fL

�
αxβ � γ � with respect to x; obtain x � .

3. Return x � to the APPS algorithm and determine if it is a new best point.

This algorithm is illustrated in Figure 2.1, and its implementation is discussed in Chapter 3
and in the Appendix.

One of the main theoretical considerations in developing an MFO method is conver-
gence. As discussed in Section 2.1, the APPS algorithm is provably convergent under mild
conditions [21, 22, 19]. This result can be leveraged by the APPS/Space Mapping scheme
if we view the inner loop as an oracle. In optimization methods, oracles are used to predict
points at which a decrease in the objective function might be observed. Analytically, an
oracle is free to choose points by any finite process. (See [20] and references therein.)

In the case of the APPS/Space Mapping scheme, the inner loop acts as an oracle in that
it chooses additional candidate points for minimizing the high fidelity model. Note these
points are given in addition to those generated by the pattern search of outer loop. There-
fore, the convergence of the APPS algorithm is not adversely affected by the addition of
the inner loop. All other changes required in the implementation of the APPS algorithm to
incorporate the inner loop are merely cosmetic and do not affect the underlying algorithm.
Thus, no additional work is required to prove convergence of the APPS/Space Mapping
approach to MFO. However, future work may include investigating any improvement to
the convergence of the APPS algorithm that may be attained from the addition of the inner
loop described here.
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Figure 2.1. The APPS/Space Mapping Scheme: First,
APPSPACK is applied to the high fidelity model over a reduced
design space. In conjunction with the search, a specialized oracle
is employed to map the design space of this high fidelity model, a
set of � xH � f � xH ��� pairs, to that of a computationally cheaper low
fidelity model using space mapping techniques. Using the result-
ing space mapping parameters, α, β, and γ, an optimum is obtained
in the low fidelity design space. The result, xtrial

H , is returned to
APPSPACK as a possible new best point.
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Chapter 3

Software Implementation of the
APPS/Space Mapping Scheme

The APPS/Space Mapping scheme was implemented using an existing software implemen-
tation of the APPS algorithm and a series of customized scripts.

3.1 The DAKOTA Toolkit

Much of the existing software that we will discuss in this Chapter is included DAKOTA
(Design and Analysis Toolkit for Optimization and Terascale Applications) [10], an object-
oriented suite of analysis and optimization methods under development at Sandia National
Laboratories. DAKOTA is also used extensively in the customized MFO inner loop script.
Therefore, we provide a short overview of the DAKOTA toolbox here.

DAKOTA provides a flexible framework for conducting parameter estimation, sensitiv-
ity analysis, uncertainty quantification, design of experiments sampling, and optimization.
Included in the optimization tools are methods for solving continuous, discrete, and mixed
continuous-discrete problems. The analysis and optimization methods in DAKOTA are de-
signed to exploit massively parallel computers (typically having O � 103 � 104 � processors)
which were developed under the Department of Energy’s Accelerated Strategic Computing
Initiative (ASC). While intended for MP computers, DAKOTA also may be used on a sin-
gle workstation or on a cluster of workstations. To date, DAKOTA has been ported to most
common UNIX-based workstations including Sun, SGI, DEC, IBM, and LINUX-based
PCs.
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3.2 APPSPACK-4.0: Software Implementation of APPS

One optimization routine included in DAKOTA is APPSPACK, a software implementation
of the APPS algorithm discussed in Section 2.1. It is targeted at simulation-based opti-
mization. These problems are characterized by a relatively small number of variables (i.e.
n � 100), and an objective function whose evaluation requires the results of a complex
simulation. Because, APPS is a direct search method, gradient information is not required.
Therefore, APPSPACK is applicable to a variety of problems. Moreover, the procedure for
evaluating the objective function can be executed via a separate program or script. This
simplifies its execution and makes it amenable to customization.

APPSPACK version 4.0 is a software implementation of the specific APPS algorithm
presented in [19]. It is written in C++ and uses MPI [16, 17] for parallelism. The details
of the implementation are described in detail in [15]. There are both serial and parallel
versions of APPSPACK-4.0, but to achieve the goals in developing an MFO algorithm, we
are solely interested in the parallel version. Of particular interest to us is the management
of the function evaluation process. The procedure is actually quite general and merely one
way of handling the process of parallelizing multiple independent function evaluations and
efficiently balancing computational load. This makes the code applicable in a wide variety
of contexts and easily customizable. In this section, we review some of the basic features
and how we customized them to fit our MFO procedure.

3.2.1 Point Objects

In the APPSPACK software, points are stored as objects that contain information about how
the point was generated and its function value (if it has been evaluated). In general, new
trial points are generated using a predetermined pattern and the current best point. For the
MFO algorithm, some additional trial points are generated using the oracle or inner loop
as described in Section 2.3. The point objects in APPSPACK also store state information
that indicates whether or not the point has been evaluated and, if it has, whether or not it
satisfies certain decrease conditions. We customized this state field for the MFO algorithm
so that it also includes information about how this point was generated (i.e. by the oracle
or otherwise) and whether or not it should be used as a starting point for a future inner loop
calculation.

3.2.2 Evaluation Conveyor

The basic purpose of the evaluation conveyor is to exchange a set of unevaluated points
T is for a set of evaluated points E. The set T may be empty, but the set E must be non-
empty because returning an empty set of evaluated points means that the current iteration
cannot proceed. More specifically, the evaluation conveyor facilitates the movement of
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points through the following three queues:
 W � the “Wait” queue where trial points wait to be evaluated.
 P � the “Pending” queue for points with on-going evaluations. Its size is restricted by
the resources available for function evaluations.
 R � the “Return” queue where evaluated points are collected. Its size can be controlled
by the user.

Note that it may take more than one APPSPACK iteration (e.g. the return of more
than one non-empty set of evaluated points E) for a point to move through the conveyor.
Therefore, at each iteration, the input set T will not necessarily contain the same points as
the output set E. Furthermore, depending on resources, it may be desirable to prune (i.e.
remove) some or all of the points that are in the W queue.

Points stored in W remain there until either there is space in P or they are pruned. By
default, the W queue is pruned whenever a new best point is found, and pruning means
emptying all the points currently still in W � For the MFO algorithm, we modify the prun-
ing process by adjusting one of the existing APPSPACK solver parameters, inherent to the
algorithm. Although the points remaining in the queue are not good candidates for pro-
gressing the optimization in the MFO outer loop, the evaluation results are still needed in
the inner loop (or oracle) process.

It should also be noted that the normal process for adding points to W is to put the
newest point at the end of the list. We customize this procedure for the MFO algorithm
by placing points that will initiate an inner loop calculation at the beginning of the queue.
Since such points are more likely to be an improvement on the current best point, we want
to evaluate them as soon as resources are available.

Before a point is pushed from W to P, certain criteria must be met. In the case of
the MFO algorithm, these criteria are based on whether or not a point requires an inner
loop calculation. If there is to be no inner loop calculation, the criteria is a cache check.
Basically, if the function value has already been calculated for that point, it is obtained from
the cache and the corresponding point is moved directly to R. Otherwise, the point moves
to P and is evaluated. If the point does require an inner loop calculation, an appropriate
sets of N high response pairs must be available. If such a set exists, then the point moves to
P and is evaluated. If the set has not yet been assembled, the point remains in W until the
set of pairs is completed. It is important to note that once a point is removed W and placed
in P or R � it cannot be pruned.

Points which have been submitted to the executor for evaluation are stored in P. The
size of P depends on the available resources. Because function evaluations are often com-
putationally expensive, points may remain in P for several iterations. Once the executor
returns the results of the function evaluation, the point is moved to R �
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The conveyor process continues until R reaches a user specified size. The default size
is one, but larger values can be used. In the extreme, a synchronous pattern search [23]
can be defined by requiring every trial point to be evaluated and collected. However, since
the MFO algorithm was designed to take advantage of the asynchronous characteristics of
APPSPACK, we use the default size for R �
3.2.3 Function Executor and Evaluator

Once a point is pushed to the pending queue, P � it must be assigned to a worker and eval-
uated. It is the job of the executor to coordinate the assignment of points to workers for
function evaluation.

The evaluator is its own entity and is not actually part of the executor. Each worker owns
its own evaluator object and receives messages from the executor on the master processor
with the information it needs to pass on to the evaluator. Therefore, in the MFO algorithm,
we have customized the executor on the master processor so that it not only sends the
point to be evaluated but also a message indicating whether or not an inner loop calculation
should be done.

The actual objective function evaluation of the trial points is handled by the evaluator.
For the MFO algorithm, it works as follows: A function input file containing the point
to be evaluated and a simple message indicating whether or not an inner loop calculation
should be done is created. Then, an external system call is made to the user-provided
executable that calculates the function value. This executable is described in more detail
within Section 3.3. After the function value has been computed, the evaluator reads the
result from the function output file. In addition, the evaluator reads a message from the
function output file which describes how this value was obtained (i.e. with or without an
inner loop calculation). Finally, both the function input and output files are deleted.

By default, APPSPACK function evaluations are run as separate executables, and com-
munication with the evaluation executable is done via file input and output. In other words,
each worker makes an external system call. This ensures applicability of APPSPACK to
simulation-based optimization and eliminates any requirements that simulators be encap-
sulated into a subroutine. In the case of MFO, we leverage this design and provide a script
that first runs an inner loop if called for and then calculates the high fidelity function value
using either the results from inner loop or the point contained in the APPSPACK function
input file. This is described in detail in Section 3.3.

3.2.4 Cache

Because the APPS algorithm is based on searching a pattern of points that lie on a regular
grid, the same point may be revisited several times. To avoid evaluating the objective
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function at any point more than once, APPSPACK employs a function value cache. Its
functions include inserting new points into the cache, performing lookups, and returning
previously calculated function values. Optionally, the cache manager can also create an
output file with the contents of the cache or read an input file generated by a previous run.

In the case of the MFO algorithm, the procedures for inserting new points into the cache,
performing lookups and retrieving previously cached values remain the same. They are
described in detail in [15]. Note that each time a function evaluation is completed and a trial
point is placed in the return queue R, the conveyor stores this point and its corresponding
function value in the cache. And, as previously discussed, before sending any point that
does not require an inner loop calculation to the pending queue P, the conveyor first checks
the cache to see if a value has already been calculated. If it has, the cached function value
is used instead of repeating the function evaluation.

The customizations made to the cache for the MFO algorithm relate to the optional
cache output file. Entries in the default cache output file only include the point and its
function value. Our cache output files includes those things and some of the additional
information stored in the APPSPACK point structure. This extra information allows us to
appropriately gather the sets of N high fidelity response pairs needed by the inner loop.
Moreover, allowing the function evaluation script to access the cache using the output file
greatly simplifies the implementation and execution of the MFO algorithm.

3.3 Scripts for the APPS/Space Mapping Function Evalu-
ation

As previously discussed, APPSPACK performs function evaluations through system calls
to an external executable, and no restrictions are placed on the language of this executable.
For the APPS/Space Mapping approach to MFO, a customized csh/Perl script was created
to manage the function evaluation process. Basically, it carries out the following steps:
 Read the trial point x and corresponding message from the APPSPACK function

input file.
 If message = “yes” and inner loop conditions are met,

– Run inner loop script (as described in section 3.6).

– Replace x with the point returned from the inner loop.
 Run high fidelity script.

1. Copy high fidelity template directory into temporary work directory.

2. Create high fidelity input file with template input file and trial point x.

3. Evaluate high fidelity function; may include calls to simulators, etc.
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4. Write the resulting function value and corresponding message to the APPSPACK
function output file.

For a specific example of such a script, see Appendix A.1.

The high fidelity script oversees the execution of the high fidelity function evaluation. It
was written to be as general as possible, so user modification is necessary to accommodate
specific applications. As seen in the example high fidelity script in the Appendix, our script
is explicitly labeled to indicate which sections require user modification. Specifically, the
user must add the appropriate command line call for the external high fidelity function
executable of interest. None of the other tasks performed by the high fidelity script require
any user modification

Completing a high fidelity function evaluation usually requires access to additional files
and directory structures. For example, obtaining a high fidelity response value may entail
running a simulator or mesh generator. Therefore, a high fidelity template directory is
maintained to store the pertinent information. The high fidelity script copies this directory
into a unique temporary work directory to prevent potential file overwriting. In addition,
the template directory contains a sample input file with aprepro [32] place holders for the
components of x. During the function execution, aprepro is used to insert the current values
into these place holders and generate an appropriate input file for the current executable run.
Examples of both a high fidelity script and corresponding high fidelity template directory
structure are given in Appendix A.1.

3.4 Script Dependencies

To reasonably implement our APPS/Space Mapping MFO scheme, we developed a series
of interrelated scripts. In this section, we give a high level overview of these scripts and
their dependencies. The entire MFO scheme is outlined in Figure 3.1. This figure gives
a graphical representation of the algorithm and includes APPSPACK, the scripts, and the
process of algorithm execution. It also illustrates how the scripts are related to one another.

The primary run script is MFO RUN SCRIPT. It is executed directly by the user to ini-
tiate the entire MFO algorithm. This script also includes some preprocessing steps that
ensure that the APPSPACK input file and the USER INTERFACE SCRIPT have the ap-
propriate dependencies (e.g. , the APPSPACK input file must specify USER SCRIPT as
the function executable). For each APPSPACK trial point, a temporary USER SCRIPT
is generated that contains all the relevant function evaluation information. Next, this
USER SCRIPT generates a temporary interface script file, interface script $tag,whose job
is to obtain the most current APPSPACK information (primarily high fidelity function
values from the APPSPACK cache file). The interface script then calls the primary in-
ner loop control script, mfo script. Using the criteria discussed in Section 3.6, the least
squares evaluation (least squares script), the space mapped low fidelity optimization cal-
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Figure 3.1. A high level view of the implementation of the MFO
scheme and its script dependencies.

culation (low fi script), and/or the high fidelity response calculation (high fi script), are
subsequently executed. More details of these scripts are given in the remainder of this
Chapter.

3.5 Scripts for User Interfacing

Our MFO scheme was implemented in such a way as to keep user modifications to a mini-
mum. However, it was necessary to also keep in mind the special needs of specific applica-
tions and their external executables. Thus, the run-time options available to the user include
some control of the inner loop execution, but they also provide some functionality for au-
tomating some of the otherwise tedious tasks. In the script USER INTERFACE SCRIPT,
the user can opt to specify the following:
 num responses – number of high fidelity function values required to execute an inner

loop calculation.
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 min calcs – minimum number of high fidelity function calculations performed be-
tween inner loop calculations.
 high var tag option ( � sequential � explicit  ) – definition of the high fidelity variable
tags in the high fidelity template input file (see Section 3.3).

– sequential – the single tag name defined in high var tag will have a sequential
number (starting at 0) appended to the end of the tag.

– explicit – all tags are defined by the user (in high var tag).
 high var tag – if sequential, a single tag value; if explicit, tag numbers in array (tag 1
tag 2 !�!�! ).
 low var tag option ( � one to one � sequential � explicit  ) – definition of the low fidelity
variable tags in the low fidelity template input file (see Section 3.6.2).

– one to one – one-to-one mapping from high to low so parameters are defined
equivalently.

– sequential – single tag name defined in low var tag will have a sequential num-
ber (starting at 0) appended to the end of the tag.

– explicit - all tags are defined by the user (in low var tag).
 num low var – number of low fidelity model variables; Note that this need not be
equivalent to the number of high fidelity variables and must be set except when the
one to one option is set.
 low var tag – if sequential, single tag value; if explicit, tags given in arrays (tag 1
tag 2 !�!�! ); if one to one, not needed.
 space map tag option ( � global � explicit  ) – space mapping tags in low fidelity model.

– global – low/high/init values are equivalent for a given space map tag for all
variables.

– explicit – all tags must be defined by the user in space map tag and for all
associated low/high/init values. Note that each design variable is assigned to
each space param tag.
 num space map – number of space mapping parameters; if global, no need to set this

parameter.
 space map tag – naming scheme for space mapping parameters.

– If global, define each space map tag without the high var tag appendix. (e.g.
(alpha, beta)).

– If explicit, every space map tag with the high var tag appendix must be de-
fined. (e.g. (alpha x0 alpha x1 beta x0 beta x1))
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 space map low – lower bounds of space map tag.

– If global, define each value in the order of space map tag. (e.g. (alpha, beta) "
(0.0 1.0))

– If explicit, define each value in the order of space map tag. (e.g. (alpha x0
alpha x1 beta x0 beta x1) " (0.0 0.0 1.0 1.0))
 space map high – upper bounds of space map tag. (See space map low for specifi-

cations.)
 space map init – initial value of space map tag. (See space map low for specifica-
tions.)
 opt strategy ( � grad � apps  ) – optimization strategy used in the space mapped low
fidelity optimization calculation.

– grad – gradient based method (from DAKOTA).

– apps – traditional APPSPACK.

An example user interface script is included in Appendix A.2.1.

3.6 Inner Loop Implementation

The inner loop implementation was designed to maintain the flexibility and black box ap-
proach of the the optimization toolbox DAKOTA. It will become evident in this section that
DAKOTA is the workhorse of the inner loop. Therefore, it is critical that the two be well
integrated. The inner loop script carries out the following steps:
 Check cache output file validity (# evaluations # # x points) and required number of

calculations between inner loop calls (set by user).
 If all inner loop conditions are met,

– Run the MFO script, mfo script.

1. Incorporate user modifications defined in the user interface script (described
in Section 3.5).

2. Convert any user supplied data and APPSPACK data to aprepro format.
3. Run normalization calculation (optional, see Section 3.5).
4. Run least squares script to calculate space mapping parameters (as de-

scribed in Section 3.6.1).
5. Optimize the space mapped low fidelity model via the low fidelity opti-

mization script (as described in Section 3.6.2).
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6. Write x � the point of optimum value, to an output file.

– Using x as a trial point, run the high fidelity script (described in Section 3.3).

The MFO script is the heart of the inner loop. It does not change from application to
application and requires no user customizations. Instead, all run time user options are
set in the user modification scripts. Appendix A.3 includes the MFO script used for this
project.

3.6.1 Computing the Space Mapping Parameters: A Series of Least
Squares Calculations

There are two methods for calculating the space mapping parameters– dependent and in-
dependent. The independent approach computes the space mapping parameters for a sin-
gle design variable while holding all other design variables and their corresponding space
mapping parameters constant. One advantage of this method is that the the number of high
fidelity responses required to complete the calculation is merely the number of space map-
ping parameters for a given design variable. However, calculating the space mapping pa-
rameters independently requires a least squares calculation for each design variable. More-
over, holding the other design variables constant restricts the sampling of space. In contrast,
the dependent method solves for space mapping parameters of all the design variables in a
single least squares calculation and does a more thoroughly sampling of the space. But, this
approach requires many more function response values; the number of space mapping pa-
rameters multiplied by the number of design variables is needed. Our MFO implementation
offers both methods for calculating the space mapping parameters but sets the dependent
method as the default because it requires far fewer high fidelity function response values.
In many of the applications of interest at Sandia, the cost of computing a high fidelity func-
tion response is often a limiting factor. Thus, we are most interested in methods that reduce
the overall number of high fidelity function evaluations.

As discussed in Section 3.2.4, once a high fidelity response is computed, its value and
corresponding design variables are cached in a file. If normalization is required, these
cached design points are used to calculate the corresponding low fidelity responses. Then,
a normalization parameter is calculated using the equation

η � ∑
i

fH
�
xi �

fL
�
xi � � (3.1)

where xi is a point in the high fidelity space. Note that the low fidelity response can be
normalized. In this case, a product η fL is used in the least squares calculation instead of
fL.

To solve (3.1), we apply the NL2SOL algorithm [13], a least squares method that is
included in the DAKOTA toolkit. Our least squares script, least squares script, is called
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internally by DAKOTA. The primary function of this script is to facilitate the calculation of
the space mapping parameters using the N high response pairs collected by the outer loop.
In other words, the parameters α, β, and γ are calculated such that

N

∑
i � 1 ��� fL

�
α
�
xi � β � γ ��� fH

�
xi � ��� 2 �

This process is implemented via a script that carries out the following steps
 Read N high fidelity responses and corresponding design variables from the APPSPACK
cache file.
 Copy the low fidelity template directory and low fidelity script into a temporary work
directory.
 Perform DAKOTA least squares calculations.

– Make multiple calls to least square script which returns η fL
�
α
�
xi � β � γ �$� fH

�
xi ���

– Return the parameters α, β, and γ that result.
 Place DAKOTA results for the space mapping parameters into an aprepro file.

3.6.2 A Script for the Space Mapped Low Fidelity Optimization

Once the space mapping parameters have been calculated, an optimization problem is
solved in the mapped low fidelity space. As described in Section 3.5, the optimization
scheme applied can be specified by the user. In fact, there are no restrictions on the type of
optimization scheme that can be used here, and the only consideration is implementation.
Although the setup of the DAKOTA optimization run is automated, some additional setup
is required to create the appropriate DAKOTA optimization file. Various DAKOTA options
could be moved up into the user input file so that the user can control them, but this was
considered unnecessary for our current MFO implementation. The space mapping param-
eters are set to one by default, but can be reset to the value calculated by the least squares
method via an aprepro call. In summary, the space mapped low fidelity optimization cal-
culation is carried out as follows:
 Read the space mapping parameters from the least squares calculation.
 Copy the low fidelity template directory and low fidelity script into a temporary work

directory
 Carry out the DAKOTA space mapped low fidelity optimization calculation.
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– Makes multiple calls to the low fidelity script and read the space mapping pa-
rameters (α, β, and γ) via aprepro.

– Return the solution, x � .
 Place x � into an aprepro file.

An example of the low fidelity script is included in Appendix A.2.2. The space mapped
low fidelity optimization is integrated into the main MFO script and is given in Appendix
A.3.
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Chapter 4

Test Problems

A set of test problems was developed for two reasons:

1. To show proof of concept for our MFO scheme, and to compare optimal solutions
obtained from our MFO scheme and traditional APPSPACK optimal as well as the
number of high fidelity runs required by each method to reach a solution.

2. To study the sensitivity of the space mapping parameters to algorithmic input includ-
ing:
 the number of high fidelity responses used for the mapping.
 the scaling of the space mapping parameters (or the size of the offset between

the low and high fidelity models).
 different starting points.

The two types of test functions in the test set are: (i) polynomial and (ii) multi-variable
Rosenbrock [31] The polynomial function was included to examine direct mappings be-
tween the low and high fidelity models as well as space mapping sensitivity. The Rosen-
brock function [30] is well known and often used by the optimization community to test
new algorithms. The multi-variable Rosenbrock is a variant that can be represented by N
design variables. It allows us to test the mapping between models with different numbers
of design variables. Note throughout this section the mapping terms have been annotated
with a * to distinguish them from terms within the test functions.
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4.1 Polynomial Function

The high fidelity model of the first polynomial test function is

fH
�
x0 � x1 ��&% α0xβ0

0 � γ0 ' 2 � % α1xβ1
1 � γ1 ' 2 � (4.1)

and the corresponding low fidelity model is

fL
�
y0 � y1 �� �

y0 � 2 � �
y1 � 2 � (4.2)

A direct mapping between these two models can be represented as P
�
xH � where

P
�
xH �� α � xβ (

H � γ � � (4.3)

so that the the mapped low fidelity function has the form

fmapped � fL
�
P
�
x0 ��� P � x1 ����&% α �0xβ0 (

0 � γ �0 ' 2 � % α �1xβ1 (
1 � γ �1 ' 2 � (4.4)

Therefore, the ideal case is

fmapped � fH " α0 � α �0;β0 � β �0;γ0 � γ �0;α1 � α �1;β1 � β �1;γ1 � γ �1 � (4.5)

Again, note that the mapping terms have been annotated with a * to distinguish them from
the polynomial terms.

A series of calculations was done in which the order of magnitude of the mapping
parameters, number of high fidelity responses to calculate the mapping, and starting point
were varied. This document includes the results for the following sets of conditions:

Test 1: γ � O
�
1 � ; α � β � 1

Test 2: γ � O
�
10 � ; α � β � 1

Test 3: γ � O
�
100 � ; α � β � 1

Test 4: α � γ � O
�
1 � ; β � 1

Test 5: α � O
�
10 �)� γ � O

�
100 � ; β � 1

Test 6: α � O
�
100 ��� γ � O

�
10000 � ; β � 1
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The results of each test case are included in the next sections. For each test case, results are
displayed in both a table and a graph. The columns of the tables are the same for each test
case and are as follows:

# Hi-Fi Resp.: the number of high fidelity responses used by the inner loop for the space
mapping calculation. For comparison, the last row of the table, labeled “APPS”,
displays results obtained using traditional APPSPACK, without making any calls to
the inner loop.

γ0 � γ1 � α0 � α1: calculated values of the space mapping parameters in (4.4). The true value is
specified as part of the the column label. Note that not all the test cases use all four
parameters.

x0 � x1: final value of the design variables in (4.4). The true solution is given as part of the
column label.

Objective Value: minimum calculated response (i.e. minimum of fH obtained by the al-
gorithm)

# Hi-Fi Calc.: total number of high fidelity response calculations completed while search-
ing for the minimum of fH .

X Speed Imp: speed improvement of the MFO algorithm from traditional APPSPACK
where speed refers to the number of high fidelity response calls that are required to
complete the run. The value was calculated using the equation

X Speed Imp � # of high fidelity response calculations for MFO
# of high fidelity response calculations for APPS

The graph illustrates the algorithmic progression of each row in the table. The x-axis
indicates the number of successful APPSPACK iterations where a successful iteration is
defined by the identification of a new best point. (Recall that an APPSPACK best point
corresponds to the point that results in the smallest objective function value.) The y-axis
corresponds to the value of the objective function. The legend indicates which color corre-
sponds to which number of high fidelity responses was used by the inner loop. The starred
points were obtained without the inner loop while the circle points were the result of an
inner loop calculation. (Note that although the point resulting from the first iteration is a
circle, this was not obtained using the inner loop. It is merely an artifact of the plotting
routine.)

4.1.1 Polynomial Test 1: γ * O + 1 , ; α - β . 1

This test uses the high fidelity function with the exact form

fH
�
x0 � x1 �� �

x0 � 0 � 5 � 2 � �
x1 � 0 � 83 � 2 �
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The results of the MFO calculation are displayed in Table 4.1 and Figure 4.1. In this case,
the space mapping parameters are nearly an exact match regardless of the number of high
fidelity responses used by the inner loop. The MFO scheme provides a 2-3 times speed up
from traditional APPSPACK. The graph indicates that this speed up is the result of doing
an inner loop calculation early in the execution of the algorithm. Moreover, the MFO
algorithm finds a better minimum.

4.1.2 Polynomial Test 2: γ * O + 10 , ; α - β . 1

In this case, the high fidelity function has the exact form

fH
�
x0 � x1 �� �

x0 � 5 � 0 � 2 � �
x1 � 8 � 3 � 2 �

The test results are given in Table 4.2 and illustrated in Figure 4.2. As was the case for test
1, the space mapping parameters are nearly an exact match in all the cases. In addition,
they scale well with the polynomial described in test case 1. The same speed up and
improvement in algorithm progression are observed.

4.1.3 Polynomial Test 3: γ * O + 100 , ; α - β . 1

Test case 3 is a high fidelity function of the exact form

fH
�
x0 � x1 �� �

x0 � 50 � 0 � 2 � �
x1 � 83 � 0 � 2 �

The results obtained with the MFO algorithm and with traditional APPSPACK are shown
in Table 4.3 and Figure 4.3. The space mapping parameters are again nearly an exact match
in all cases and scale very well with the test case 1 and 2 polynomials. Improvements in
algorithmic progression and speed are also apparent.

4.1.4 Polynomial Test 4: α - γ * O + 1 , ; β . 1

For polynomial test case 4, the high fidelity function takes the exact form

fH
�
x0 � x1 �� �

0 � 8x0 � 0 � 5 � 2 � �
0 � 5x1 � 0 � 83 � 2 �

The results of the multifidelity optimization calculation are displayed in Table 4.4 and
Figure 4.4. The results show that the space mapping parameters are nearly an exact match
regardless of the number of high fidelity responses used by the inner loop. There is a sign
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difference in some of the mapping parameters, but this is still a match since the terms are
squared for use in the algorithm. A beneficial speed-up over traditional APPSPACK is also
evident.

4.1.5 Polynomial Test 5: α * O + 10 ,$- γ * O + 100 , ; β . 1

The high fidelity function with the exact form

fH
�
x0 � x1 �� �

8 � 0x0 � 50 � 0 � 2 � �
5 � 0x1 � 83 � 0 � 2

is used in polynomial test case 5. The comparison between the APPSPACK and MFO
results are shown in Table 4.5 and Figure 4.5. As was the case for the previous tests, the
space mapping parameters are nearly an exact match for all the cases and scale well with
the polynomial test case 1. Although there is a sign difference for some of the mapping
parameters, the terms are squared when used so this can still be considered a match.

4.1.6 Polynomial Test 6: α * O + 100 ,/- γ * O + 10000 , ; β . 1

For the final polynomial test, the high fidelity function has the exact form

fH
�
x0 � x1 �� �

80 � 0x0 � 5000 � 0 � 2 � �
50 � 0x1 � 8300 � 0 � 2 �

Table 4.6 and Figure 4.6 display the results obtained using both the MFO and the traditional
APPSPACK algorithms. The space mapping parameters are nearly an exact match and a
significant speed-up is observed.
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# Hi-Fi γ0 γ1 x0 x1 Objective # Hi-Fi X Speed
Resp. 0.5 -0.83 -0.5 0.83 Value Calc. Imp

2 0.50 -0.83 -0.499 0.835 2.86e-5 21 2.76
4 0.50 -0.83 -0.50 0.83 1.0e-20 25 2.32
6 0.50 -0.83 -0.50 0.83 2.0e-20 28 2.07
8 0.50 -0.83 -0.50 0.83 4.0e-20 32 1.81

APPS — — -0.50 0.85 4.0e-4 58 —

Table 4.1. Polynomial test case 1: fH � x0 � x1 �10 � x0 2 0 3 5 � 2 2� x1 4 0 3 83 � 2 and fL 0 y2
0 2 y2

1 with starting point � x0 � x1 �50� 4 2 3 0 �64 2 3 0 � . Note the exact matching of the mapping parame-
ters.
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Figure 4.1. Polynomial Test Case 1: fH � x0 � x1 �70 � x0 2 0 3 5 � 2 2� x1 4 0 3 83 � 2 and fL 0 y2
0 2 y2

1. In searching for a minimum of
fH � the MFO algorithm progresses much quicker than traditional
APPSPACK.
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# Hi-Fi γ0 γ1 x0 x1 Objective # Hi-Fi X Speed
Resp. 5.0 -8.3 -5.0 8.3 Value Calc. Imp

2 5.0 -8.3 -5.0 8.3 1.3e-17 21 2.76
4 5.0 -8.3 -5.0 8.3 1.0e-18 25 2.32
6 5.0 -8.3 -5.0 8.3 1.7e-17 28 2.07
8 5.0 -8.3 -5.0 8.3 0.0 32 1.81

APPS — — -5.0 8.5 4.0e-2 58 —

Table 4.2. Polynomial Test Case 2: fH � x0 � x1 �80 � x0 2 5 3 0 � 2 2� x1 4 8 3 3 � 2 and fL 0 y2
0 2 y2

1 with starting point � x0 � x1 �90� 4 20 3 0 �64 20 3 0 � . Note the exact matching of the mapping parame-
ters and the nearly identical scaling to polynomial test case 1.
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Figure 4.2. Polynomial Test Case 2: fH � x0 � x1 �70 � x0 2 5 3 0 � 2 2� x1 4 8 3 3 � 2 and fL 0 y2
0 2 y2

1. The MFO method provides improved
algorithm progression and results. Note that this is a linear plot
since the “8 response” case is exactly 0.
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# Hi-Fi γ0 γ1 x0 x1 Objective # Hi-Fi X Speed
Resp. 50.0 -83.0 -50.0 83.0 Value Calc. Imp

2 50.0 -83.0 -50.0 82.7 6.74e-2 21 2.76
4 50.0 -83.0 -50.0 83.0 1.0e-16 25 2.32
6 50.0 -83.0 -50.0 83.0 0.0 28 2.07
8 50.0 -83.0 -50.0 83.0 0.0 32 1.81

APPS — — -50.0 85.0 4.0e-2 58 —

Table 4.3. Polynomial Test Case 3: fH � x0 � x1 �:0 � x0 2 50 3 0 � 2 2� x1 4 83 3 0 � 2 and fL 0 y2
0 2 y2

1 with starting point � x0 � x1 �50� 4 200 3 0 �64 200 3 0 � . Note the exact matching of the mapping pa-
rameters and the nearly identical scaling to polynomial test cases
1 and 2.
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Figure 4.3. Polynomial Test Case 3: fH � x0 � x1 ��0 � x0 2 50 3 0 � 2 2� x1 4 83 3 0 � 2 and fL 0 y2
0 2 y2

1. The minimum obtained by the MFO
method is better than the one found by traditional APPSPACK.
Note that this is a linear plot since the “6 response” and “8 re-
sponses” cases is exactly 0.
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# Hi-Fi α0 α1 γ0 γ1 x0 x1 Objective # Hi-Fi X Speed
Resp. 0.8 0.5 0.5 -0.83 -0.625 1.66 Value Calc. Imp

4 -0.80 0.50 -0.50 -0.83 -0.625 1.66 1.36e-15 26 2.73
6 0.80 0.50 0.50 -0.83 -0.625 1.66 9.35e-16 30 2.37
8 0.80 0.50 0.50 -0.83 -0.625 1.66 5.76e-16 30 2.37

APPS — — — — -0.64 1.65 1.69e-4 71 —

Table 4.4. Polynomial Test Case 4: fH � x0 � x1 �;0 � 0 3 8x0 2 0 3 5 � 2 2� 0 3 5x1 4 0 3 83 � 2 and fL 0 y2
0 2 y2

1 with starting point � x0 � x1 �<0� 4 2 3 0 �64 2 3 0 � . Note the exact matching of the mapping parame-
ters and speed-up from APPSPACK.

0 2 4 6 8 10 12 14 16 18
10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

102

APPSPACK Iteration

Fu
nc

tio
n 

V
al

ue no space mapping

inner loop result

4 responses

6 responses

8 responses

APPS Only

Note: 6 and 8
responses overlap

Figure 4.4. Polynomial Test Case 4: fH � x0 � x1 �=0� 0 3 8x0 2 0 3 5 � 2 2 � 0 3 5x1 4 0 3 83 � 2 and fL 0 y2
0 2 y2

1. The addition
of the inner loop in the MFO method improves progression.
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# Hi-Fi α0 α1 γ0 γ1 x0 x1 Objective # Hi-Fi X Speed
Resp. 8.0 5.0 50.0 -83.0 -6.25 16.6 Value Calc. Imp

4 -8.0 5.0 -50.0 -83.0 -6.25 16.6 4.06e-14 26 2.69
6 -8.0 5.0 -50.0 -83.0 -6.25 16.6 6.4e-17 30 2.33
8 8.0 5.0 50.0 -83.0 -6.25 16.6 4.1e-15 30 2.33

APPS — — — — -6.4 16.5 1.69 70 —

Table 4.5. Polynomial Test Case 5: fH � x0 � x1 �>0� 8 3 0x0 2 50 3 0 � 2 2 � 5 3 0x1 4 83 3 0 � 2 and fL 0 y2
0 2 y2

1 with starting
point � x0 � x1 �:0 � 4 20 3 0 �64 20 3 0 � . Note the exact matching of the
mapping parameters and the scaling with the polynomial in test
case 1.
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Figure 4.5. Polynomial Test Case 5: fH � x0 � x1 �=0� 8 3 0x0 2 50 3 0 � 2 2 � 5 3 0x1 4 83 3 0 � 2 and fL 0 y2
0 2 y2

1. Note the im-
provement of MFO over APPSPACK.
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# Hi-Fi α0 α1 γ0 γ1 x0 x1 Objective # Hi-Fi X Speed
Resp. 80.0 50.0 5000.0 -8300.0 -62.5 166.0 Value Calc. Imp

4 80.0 50.0 5000.0 -8300.0 -62.5 166.0 2.81e-10 26 2.69
6 80.0 50.0 5000.0 -8300.0 -62.5 166.0 3.14e-11 30 2.33
8 80.0 50.0 5000.0 -8300.0 -62.5 166.0 3.08e-11 30 2.33

APPS — - — — -6.4 16.5 1.69e+4 70 —

Table 4.6. Polynomial Test Case 6: fH � x0 � x1 �>0� 80 3 0x0 2 5000 3 0 � 2 2 � 50 3 0x1 4 8300 3 0 � 2 and fL 0 y2
0 2 y2

1
with starting point � x0 � x1 �50 � 4 200 3 0 �64 200 3 0 � . The space
mapping parameters are almost an exact match.
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Figure 4.6. Polynomial Test Case 6: fH � x0 � x1 �=0� 80 3 0x0 2 5000 3 0 � 2 2 � 50 3 0x1 4 8300 3 0 � 2 and fL 0 y2
0 2 y2

1. The
speed-up of the MFO algorithm over APPSPACK is about 2 times.
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4.2 Multi-Variable Rosenbrock Function

In testing optimization methods, it is common to study the feasibility of an algorithm on
the Rosenbrock function. The function is

fR � 100 ? y1 � y2
0 @ 2 � �

1 � y0 � 2 � (4.6)

and has a minimum at fR
�
1 � 1 �A� 0 � 0. The multi-variable Rosenbrock function has N design

variables and can be written as

fMV R
�
x0 ��!�!�!�� xN B 1 �� N B 1

∑
k � 1 C 100 ? xk � x2

k B 1 @ 2 � �
1 � xk B 1 � 2 D � (4.7)

where fMVR
�
1 ��!�!�!E� 1 �8� 0 � 0 is a minimum. Note that (4.7) for N � 2 is merely (4.6). Thus,

the Rosenbrock equation can be used as a low fidelity model and the multi-variable Rosen-
brock as a corresponding high fidelity model. We examine these models to study the feasi-
bility of mapping between models with different numbers of design variables.

To map between models with different numbers of design variables, a general mapping
was developed that captures the cross-dependencies of mapping parameters. This general
mapping has the following form

P F n G � A F m H n G x F n GH � Γ F m G (4.8)

where

A F m H n G � IJK α00 !�!�! α0n
... . . . ...

αm0 !�!�! αmn

LNMO � Γ F m G � IJK γ0
...

γm

LNMO � (4.9)

m is the number of low fidelity variables, and n is the number of high fidelity variables.
The general mapping (4.8) can be reduced to our previous mapping, m � n, by using only
the diagonal terms of A F m H n G . Note that when the cross terms are required, additional high
fidelity response calculations are required.

The following test cases were analyzed using the standard Rosenbrock function as the
low fidelity model and the multi-variable Rosenbrock as the high fidelity model:

Test 1: N � 3, α00 �������E� αmn
� O

�
1 � , γ0 ��������� γm � 0

Test 2: N � 4, α00 �������E� αmn
� O

�
1 � , γ0 ��������� γm � 0
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Test 3: N � 3, α00 �������E� αmn
� O

�
1 � , γ0 ��������� γm

� O
�
1 �

As with the polynomial test cases, the results from each test case are included in the next
sections in both table and graph formats. The tables contain basically the same information
as previously. One change is that the first column is now the the number of non-zero space
mapping parameters, from matrix (4.9), used in the calculations (# SM parameters). The
last row of the table (APPS) still displays results obtained when APPSPACK was applied
to the high fidelity model (e.g. no calls to the inner loop). The other columns in the table
include the final values of the design variables (x0 ��!�!�!E� xN), the final objective function value
(Objective Value), the total number of high fidelity response calculations completed (# Hi-
Fi Resp.), and the speed improvement of the MFO algorithm from traditional APPSPACK
(X Speed Imp).

As before, the graph illustrates the algorithmic progression of each row in the table. The
x-axis indicates the number of successful APPSPACK iterations where successful refers to
identifying of a new best point. The y-axis shows the value of the objective function. The
legend indicates which color corresponds to what number of non-zero high fidelity space
mapping parameters were used. The circles and stars indicate whether or not an inner loop
calculation was done to obtain the point respectively.

4.2.1 Multi-Variable Rosenbrock Test 1: N . 3, α00 -QPRPRPS- αmn * O + 1 , ,
γ0 -QPRPRPS- γm . 0

This test uses the high fidelity function of the exact form

fH
�
x0 � x1 � x2 �8� 100 ? x1 � x2

0 @ 2 � �
1 � x0 � 2 � 100 ? x2 � x2

1 @ 2 � �
1 � x1 � 2 � (4.10)

and the exact mapping terms

A F 2 H 3 G �UT α00 α01 α02
α10 α11 α12 V � Γ F 2 G �WT 0

0 V � (4.11)

In Table 4.7, results given the following testing conditions are displayed:
 3 non-zero space mapping parameters; α10 � α01 � α02 � 0 � 0
 4 non-zero space mapping parameters; α10 � α01 � 0 � 0
 6 non-zero space mapping parameters; all α are non-zero

Since the multi-variable Rosenbrock is a sum of squares whose minimum is 0, the equation
can be solved by setting each individual squared term equal to zero. Then, (4.10) shows
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that x0 and x1 are forced to their optimum with the
�
1 � x0 � 2 and

�
1 � x1 � 2 respectively.

Therefore x2 is only dependent on the x1 term via ? x2 � x2
1 @ 2, and the only relevant cross

term is α12. Basically, the closer the problem is to the objective function the “non-relevant”
space mapping parameters will go to zero.

Both Table 4.7 and Figure 4.7 show that a solution is found the quickest in the the case
of using three space mapping parameters. However, if four space mapping parameters are
used, the speed-up is still significant and a better solution can be obtained.

4.2.2 Multi-Variable Rosenbrock Test 2: N . 4, α00 -QPRPRPS- αmn * O + 1 , ,
γ0 -QPRPRPS- γm . 0

In test 2, the high fidelity function has the exact form

fH
�
x0 � x1 � x2 �8� 100 ? x1 � x2

0 @ 2 � �
1 � x0 � 2 � 100 ? x2 � x2

1 @ 2 � �
1 � x1 � 2� 100 ? x3 � x2

2 @ 2 � �
1 � x2 � 2 � (4.12)

and the exact mapping terms

A F 2 H 3 G � T α00 α01 α02 α03
α10 α11 α12 α13 V � Γ F 2 G � T 0

0 V � (4.13)

Table 4.8 includes results for the following testing conditions:
 4 non-zero space mapping parameters; α10 � α01 � α02 � α03 � 0 � 0
 8 non-zero space mapping parameters; all α are non-zero

As illustrated in Table 4.8 and Figure 4.8, the case with four non-zero space mapping
parameters gives the best answer with the least amount of computational effort.

4.2.3 Multi-Variable Rosenbrock Test 3: N . 3, α00 -QPRPRPS- αmn * O + 1 , ,
γ0 -QPRPRPS- γm * O + 1 ,

The exact form high fidelity function used in test 3 is

fH
�
x0 � x1 � x2 �8� 100 ? x1 � x2

0 @ 2 � �
1 � x0 � 2 � 100 ? x2 � x2

1 @ 2 � �
1 � x1 � 2 � (4.14)
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and the exact mapping terms are

A F 2 H 3 G � T α00 α01 α02
α10 α11 α12 V � Γ F 2 G � T γ0

γ1 V � (4.15)

Table 4.9 giving results for the following test conditions:
 5 space parameters - α10 � α01 � α02 � 0 � 0 and all γ are non-zero
 6 space parameters - α10 � α01 � 0 � 0 and all γ are non-zero
 8 space parameters - all α and γ are non-zero

The results are illustrated in Figure 4.9. The test condition with eight non-zero space
mapping parameters gives a significantly better solution. It requires more computational
work than the other MFO runs, but it still provides some improvement over traditional
APPSPACK.
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# SM x0 x1 x2 Objective # Hi-Fi X Speed
Parameters 1.0 1.0 1.0 Value Calc. Imp

3 7.29e-1 5.45e-1 2.93e-1 3.04e-1 42 2.98
4 8.29e-1 6.80e-1 4.57e-1 1.39e-1 50 2.50
6 2.99e-1 6.8e-1 4.57e-1 1.35 87 1.44

APPS 3.50e-1 1.20e-1 -1.10e-16 1.218 125 —

Table 4.7. Multi-Variable Rosenbrock Test Case 1: fH 0
100 X x1 4 x2

0 Y 2 2 � 1 4 x0 � 2 2 100 X x2 4 x2
1 Y 2 2 � 1 4 x1 � 2 and fL 0

100 X y1 4 y2
0 Y 2 2 � 1 4 y0 � 2.
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Figure 4.7. Multi-Variable Rosenbrock Test Case 1: fH 0
100 X x1 4 x2

0 Y 2 2 � 1 4 x0 � 2 2 100 X x2 4 x2
1 Y 2 2 � 1 4 x1 � 2 and fL 0

100 X y1 4 y2
0 Y 2 2 � 1 4 y0 � 2.
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# SM x0 x1 x2 x3 Objective # Hi-Fi X Speed
Parameters 1.0 1.0 1.0 1.0 Value Calc. Imp

4 4.94e-1 2.41e-1 8.12e-2 9.02e-3 1.73 80 2.36
8 5.54e-1 2.89e-1 8.69e-2 -3.15e-3 1.58 154 1.23

APPS 3.20e-1 9.00e-2 -4.00e-2 -1.10e-16 2.312 189 —

Table 4.8. Multi-Variable Rosenbrock Test Case 2:
fH 0 100 X x1 4 x2

0 Y 2 2 � 1 4 x0 � 2 2 100 X x2 4 x2
1 Y 2 2 � 1 4 x1 � 2 2

100 X x3 4 x2
2 Y 2 2 � 1 4 x2 � 2 and fL 0 100 X y1 4 y2

0 Y 2 2 � 1 4 y0 � 2
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Figure 4.8. Multi-Variable Rosenbrock Test Case 2:
fH 0 100 X x1 4 x2

0 Y 2 2 � 1 4 x0 � 2 2 100 X x2 4 x2
1 Y 2 2 � 1 4 x1 � 2 2

100 X x3 4 x2
2 Y 2 2 � 1 4 x2 � 2 and fL 0 100 X y1 4 y2

0 Y 2 2 � 1 4 y0 � 2.
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# SM x0 x1 x2 Objective # Hi-Fi X Speed
Parameters 1.0 1.0 1.0 Value Calc. Imp

5 5.48e-1 3.18e-1 1.18e-1 7.28e-1 50 2.50
6 3.48e-1 1.21e-1 6.56e-3 1.20 62 2.02
8 9.50e-1 9.06e-1 8.35e-1 3.18e-2 91 1.38

APPS 3.50e-1 1.20e-1 -1.10e-16 1.218 125 —

Table 4.9. Multi-Variable Rosenbrock Test Case 3: fH 0
100 X x1 4 x2

0 Y 2 2 � 1 4 x0 � 2 2 100 X x2 4 x2
1 Y 2 2 � 1 4 x1 � 2 and fL 0

100 X y1 4 y2
0 Y 2 2 � 1 4 y0 � 2.
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Figure 4.9. Multi-Variable Rosenbrock Test Case 3: fH 0
100 X x1 4 x2

0 Y 2 2 � 1 4 x0 � 2 2 100 X x2 4 x2
1 Y 2 2 � 1 4 x1 � 2 and fL 0

100 X y1 4 y2
0 Y 2 2 � 1 4 y0 � 2.
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Chapter 5

Engineering Science Application

Although our MFO algorithm proved to be promising for the test problems, we wanted to
demonstrate its usefulness on an engineering sciences application. We began by consider-
ing earth penetrators. Our goal was to work with the earth penetrator design community
to help solve an important problem. However, we met with some resistance due to the
politics of earth penetrators. For example, due to cross-laboratory competition of earth
penetrator designs, developers were reluctant to share their models with researchers. In
addition, earth penetrators fell out of favor in Congress and received significant funding
cuts in FY04. Therefore, we switched our focus to an entirely different application, the
groundwater remediation problem. We begin this section describing the preliminary, yet
promising, results for an earth penetrator problem. We end with a overview of the ground-
water remediation problem and our complete results.

5.1 Earth Penetrator Models

Earth penetrators models consist of a deformable projectile subjected to extremely high
strain rates. This is typically a missile like projectile that may be composed of multiple
materials making impact with a solid target that may be composed of layers of material
including concrete, soft soil, hard soil, etc. Typically, the input parameters in such a model
are the penetrator impact velocity, angle of attack, material composition, and target material
composition (see Figure 5.1). The model response values of interest include the penetrator’s
displacement within the target and the penetrator’s acceleration at impact.

The Sandia code PRONTO 3D [33, 36, 7] was used to implement earth penetrator mod-
els. PRONTO 3D is a three-dimensional transient solid dynamics code for analyzing large
deformations of highly nonlinear materials subjected to extremely high strain rates. The
penetrator may be modeled in two modes: (i) compressible mode to allow for deformation
of the penetrator as it impacts the target and (ii) rigid mode so that no deformation occurs
during impact. The compute time is significantly different for these two modes. An 8000
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Figure 5.1. Simple graphic depicting an earth penetrator com-
posed of multiple materials (depicted by density ρ) striking a tar-
get.

element mesh in the compressible mode takes approximately 40 minutes to execute while
the rigid mode takes only about 10 seconds on the same computer, a computational ratio
of 1:240. A parameter study varying the penetrator density and corresponding acceleration
response is shown in Figure 5.2. The elastic body results in an oscillatory acceleration re-
sponse since the body is compressible and pressure waves within the body produce these
noisy oscillations. In contrast, the rigid body has a relatively smooth acceleration response
with respect to density, but it captures the trend of the elastic body. This factor and the
difference in compute times make this problem an ideal candidate for multifidelity opti-
mization.

Many different earth penetrator calculations were done minimizing acceleration and
maximizing displacement by varying penetrator density. With these calculations, a 2-3
times speed up was observed with displacement and 1-2 times speed was observed with
acceleration. One case of particular interest is shown in Figure 5.3 and Table 5.1. The
acceleration of the penetrator was minimized such that
 high fidelity model = elastic model with fine mesh (see Figure 5.2) ,
 low fidelity model = rigid model with fine mesh.

As Figure 5.3 illustrates, the MFO approach actually takes longer, but finds an improved
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Parameter Study - Acceleration dependence on Density
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Figure 5.2. Parameter study of acceleration response of earth
penetrator with varying density impacting a concrete target. Note
how the rigid penetrator captures the trend of the elastic penetrator
without the ”noise”.

minimum. The reason for this is that traditional APPSPACK becomes trapped at a local
minimum. Since the acceleration response of the rigid body is smooth and captures the
correct trend, it pushes the optimization past the local noise and finds the a better minimum
(see Figure 5.4). This result is in no way implying that our MFO algorithm guarantees a
global minimum, just that the behavior was observed in this specific case.
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Figure 5.3. Comparison of traditional APPSPACK and MFO
(specified as Inner Loop Calculation) on the problem of mini-
mizing the acceleration of an earth penetrator. See Table 5.1 for
specifics. Although the MFO case takes longer to optimize, it finds
the “observed” optimum (see Figure 5.4).

Optimization Objective # Hi-Fi X Speed
Scheme Value Calc. Imp
MFO 5.0e7 11 0.82
APPS 7.3e7 9 —

Table 5.1. Comparison of traditional APPSPACK and MFO on
the problem of minimizing acceleration of an earth penetrator. Al-
though the MFO case takes longer to optimize, it finds a better
optimum (see Figure 5.4).
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Parameter Study - Acceleration dependence on Density
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Figure 5.4. Traditional APPSPACK calculates the local optimum
specified with the red arrow. The MFO scheme demonstrates a
global search capability and finds a better optimum at the purple
arrow. From the parameter study this is the observed optimum, but
not necessarily the global optimum.

55



5.2 Groundwater Remediation Models

Remediation is a technique that is employed to reduce or minimize the negative health and
environmental impacts of chemical contamination. One method of groundwater remedi-
ation, hydraulic capture (HC), uses the design of a well field to alter the direction of the
groundwater flow and reverse or halt the migration of the contaminant plume. For exam-
ple, a well field can be designed so that gradients point toward the interior of the plume,
resulting in containment and possible shrinkage of the plume. The overall goal of HC is to
contain or shrink a plume at minimum cost. Therefore, optimization is a useful tool for the
design of an appropriate well field.

Plume migration control is an active area of research in environmental engineering.
The three prime areas of focus are: improving models of subsurface flow and transport,
incorporating installation and operational costs of HC into the objective functions, and
developing and calibrating capture constraints so that computational efficiency is obtained
in the modeling process while simultaneously avoiding excessive pumping in the final well
design. Once an objective function and constraints are developed, optimization techniques
are used to determine the well design that minimizes the remediation cost while satisfying
the constraints. Mathematically, these problems are challenging because evaluation of the
objective function and constraints typically requires the results of a simulation. This means
that necessary gradient information may be difficult or impossible to obtain.

The problem studied here is motivated by a hydraulic capture application proposed
as part of a suite of benchmarking test problems in [27]. This entire test suite of prob-
lems includes data for several different physical domains and objective functions as well as
guidelines for comparison. For the HC application, it is left to the modeler to choose the
capture constraint and the concentration contour of the plume boundary.

5.2.1 Models of Hydraulic Capture

In this study, we consider two hydraulic capture models: transport-based concentration
control (TBCC) and flow-based hydraulic control (FBHC). For both models, the optimiza-
tion problem is

min
u Z Ω

J
�
u � (5.1)

where u is a vector of decision variables and Ω is the feasible region of u and can be
represented by a set of constraint equations.
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The objective function J is merely the sum of the capital (or installation) cost Jc and
the operational cost Jo and can be stated as follows [27, 26]:

J � n

∑
i � 1

c0db0
i � ∑

Qi [ 0 \ 0 c1 �Qm
i � b1

�
zgs � hmin � b2] ^`_ a

Jc� b t f

0 c ∑
i HQi [ 0 \ 0 c2Qi

�
hi � zgs � � ∑

i HQi d 0 \ 0 c3Qi e dt] ^`_ a
Jo

� (5.2)

In Jc � the first term accounts for drilling and installing all the wells and the second term
represents the additional cost for pumps for extraction wells. In Jo � the term pertaining the
extraction wells includes the lift cost associated with raising the water to the surface. More
specifically, in (5.2) c j and b j are cost coefficients and exponents, respectively, di � zgs is
the depth of well i � Qm

i is the design pumping rate, and hmin is the minimum allowable head.
We use the values hmin � 10

�
m � and Qm

i �gf 0 � 0064
�
m3 h s � and di � 30

�
m � for each pump

i. Note that a negative pumping rate means a well is extracting and a positive pumping rates
means a well is injecting and that injection wells are assumed to operate under gravity feed
conditions. The simulation time is t f � 5 years. Other pertinent cost data is given in [26].

The number of wells, n i N � and pumping rates j Qi k n
i � 1 are decision variables. If, in

the course of the optimization, a well rate satisfies the inequality �Qi �li 10 B 6 � m3 h s � , that
well is removed from the design space and excluded from all other calculations. Although
this restriction leads to a discontinuous objective function, the benefit is a decrease in the
installation cost and a well design with fewer wells operating at higher rates. We assume
that all wells have a fixed depth, but that their location can vary in the x � y plane. These
well locations, j � xi � yi � k n

i � 1 are also decision variables, but do not explicitly appear in the
objective function.

The hydraulic heads, hi
�
m � for well i, also vary with the decision variables and obtain-

ing their values at each iteration requires a solution to equations that model saturated flow.
The model is given by

Ss
∂h
∂t

� ∇ ! � K ! ∇h � � S̄ � (5.3)

where Ss
�
1 h m � is the specific storage coefficient, h

�
m � is the hydraulic head, K

�
m h s � is the

hydraulic conductivity tensor, and S̄
�
m3 h s � is a fluid source term and is where the decision

variables enter into the state equation for the HC problem. Numerically, the simulator
MODFLOW2000 [38] is used to find a solution to (5.3).

In HC models, constraints on the decision variables typically include bounds on the
well capacities and the hydraulic head at each well location. For example, we incorporate
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the inequalities

Qemax i Qi i Qimax � m3 h s ��� i � 1 ���m�n�m� n (5.4)

hmax # hi # hmin � m �)� i � 1 ���m�m�n� n (5.5)

where, Qemax is the maximum extraction rate at any well, Qimax is the maximum injection
rate at any well, hmax is the maximum allowable head, and hmin is the minimum allowable
head. Note that assessing whether or not (5.5) holds requires a solution to (5.3). In addition
to (5.4) and (5.5), the HC problem constrains the net pumping rate using the inequality

QT � n

∑
i � 1

Qi # Qmax
T � (5.6)

where Qmax
T

�
m3 h s � is the maximum allowable total extraction rate. This ensures that the

land is not completely drained of all its water resources.

5.2.1.1 Flow-based Hydraulic Control (FBHC)

Flow-based hydraulic control is a technique for plume containment that enforces head gra-
dient constraints around the perimeter of the plume. In the particular model we consider,
a head gradient constraint is formulated as a constraint on the difference in hydraulic head
values at specified locations. Consider

hk
1 � hk

2 # d
�
m �)� k � 1 ����� M (5.7)

where M is the number of head gradient constraints imposed around the boundary, h1 � h2
are hydraulic head values at specified nodes for each constraint k, and d is the bound on
the difference. This set of constraints can be used to enforce head gradients vertically or
horizontally. For example, in the simple case where h1 are h2 are aligned at a distance of
distance ∆x apart, then dividing (5.7) by ∆x yieldso

hk
1 � hk

2
∆x p # d

∆x
�
m h s ��� (5.8)

The FBHC approach to the HC problem is minimizing the objective function J subject
to (5.4), (5.5), (5.6) and (5.7). Use of this method is attractive because it is relatively
inexpensive. However, it requires (5.7) to be calibrated to ensure that the contaminant
plume is properly captured and to avoid excessive pumping [28].
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5.2.1.2 Transport Based Concentration Control (TBCC)

A direct approach for plume containment is to impose constraints on the concentration at
specified locations. This constraint can be expressed as

C j i Cmax
j

�
kg h m3 � (5.9)

where C j is the concentration at some observation node j and Cmax
j is the maximum al-

lowable concentration. Evaluation of this constraint requires a solution to the contaminant
transport equation

∂
�
θαCι �
∂t

� ∇ ! � θαDι ! ∇Cι ��� ∇ ! � qCι � � Iι � Rι � Sι � (5.10)

where Cι � kg h m3 � is the concentration of species ι in the aqueous phase, θα is the volume
fraction of the aqueous phase, D is a hydrodynamic dispersion tensor, v

�
m h s � is the mean

pore velocity, q
�
m h s � is the Darcy velocity, and I ι � Rι � Sι represent interphase mass transfer,

biogeochemical reactions, and source of mass respectively. Numerically, the simulator
known as MT3DMS [39] is used to obtain a solution to the transport equation.

Solving the HC problem using the TBCC model is minimizing the cost function J with
respect to (5.4), (5.5), (5.6), and (5.9). Therefore, the TBCC approach requires a solution to
both (5.10) and (5.3) making it computationally expensive. Moreover, objective functions
and constraints involving concentrations are nonconvex in some situations [6, 3], making
the minimization problem more difficult.

5.2.2 HC Problem for Comparison

In the MFO approach to the HC problem, we use the FBHC model as the low fidelity
model and the TBCC model as the corresponding high fidelity model. In order to test the
effectiveness of the MFO approach, we compare results for the HC problem included in the
set of community problems proposed in [27]. For the simple domain of this problem, the
FBHC formulation has been shown to be sufficient [12]. However, it should be noted that
other approaches are needed for more realistic domains [1].

In the HC problem used here, the physical domain is a 1000 q 1000 q 30
�
m � unconfined

aquifer. Since the aquifer is unconfined, the head constraint (5.5), depends nonlinearly on
the pumping rates. For the hydraulic conductivity field, we use the simple homogeneous
case with K � 5 � 01 q 10 B 5 � m h s ��� Paired with the saturated flow equation (5.3), we use the
following boundary and initial conditions:

∂h
∂x rrrr x � 0

� ∂h
∂y rrrr y � 0

� ∂h
∂z rrrr z � 0

� 0 � t  0
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qz
�
x � y � z � h � t  0 �8�s� 1 � 903x10 B 8 � m h s ��� where qz �s� K

∂h
∂z
�

h
�
1000 � y � z � t  0 �� 20 � 0 � 001y

�
m �

h
�
x � 1000 � z � t  0 �1� 20 � 0 � 001x

�
m ���

Here qz is the Darcy flux out of the domain, representing recharge into the aquifer that
could result from rainfall. The steady state solution to the flow problem without wells
is h

�
x � y � z � 0 �t� hs

�
m ��� and Ss � 2 � 0 q 10 B 1 � 1 h m � is the specific yield of the unconfined

aquifer. The ground surface elevation is zgs � 30
�
m �)�

A plume development was simulated using (5.10) from a finite source for five years
with a constant concentration of 1kg h m3 located in the region bounded by� � 200 � 225 � ; � 475 � 525 ��� � h � h � 2 � � � m �)�
We chose the 5 q 10 B 5 � kg h m3 � contour line as the plume boundary and set Cmax

j � 5 q
10 B 5 � kg h m3 � in (5.9). The MT3DMS [39] was used to generate this initial contaminant
plume, as described in [26].

For the FBHC approach, we use five head difference constraints (5.7) with d � 10 B 4 �
Five concentration constraints (5.9) are used for the TBCC approach, enforced in the same
locations as (5.7) in the FBHC approach. The starting point includes two extraction and
two injection wells for a total of N � 4 candidate wells and initial pumping rates of f Qi �
0 � 0064

�
m3 h s � .

5.2.3 Numerical Results

The financial cost of the remediation at the initial iterate is J
�
u0 �u� $78 � 587 � Table 5.2

shows the minimum financial cost found and the %-decrease for each of the approaches–
FBHC, TBCC, and MFO. Both the FBHC and TBCC models were solved using APPSPACK
4.0, the same software customized for the APPS/Space Mapping approach to MFO. Note
that all three methods produce solutions with similar remediations costs and overall per-
centage decreases.

One way to view the computational performance of the algorithms is to consider the
number of function evaluations needed to reach the optimal point. As with most simulation-
based optimization problems, the majority of the computational cost in the function eval-
uation is the calls to the MODFLOW2000 and/or MT3DMS simulators. Note that if (5.6)
is not satisfied, a flow simulation is not performed in any approach and likewise if (5.5) is
not satisfied, then no transport simulation is performed for the TBCC or MFO approaches.
The fourth and fifth columns in Table 5.2 show the number of times that MODFLOW2000
(mf2k) and MT3DMS (mt3d) were called for each approach. For this problem, a MOD-
FLOW2000 simulation takes approximately 2 seconds, wall clock time and a MT3DMS
simulation takes anywhere from 40 to 50 seconds wall clock time.
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Figure 5.5 highlights the differences in the three approaches by illustrating their per-
formances over the course of the algorithm’s execution. All three approaches start off the
same. However, once the MFO approach receives the results of an inner loop calculation,
it is able to make a significant decrease in the overall cost more quickly.

5.2.4 Discussion

In [27], many of the existing challenges in optimal design of problems involving saturated
flow and transport are addressed. The lack of representative problems to be used for the
testing and comparison of methods is discussed, and a set of test problems is presented.
Although the test problems were developed after an extensive literature search and are
indicative of real world problems, the domain is still relatively simple. For this simple, ho-
mogeneous case considered in this work, the FBHC model is sufficient and computationally
cost-effective [11]. However, the introduction of heterogeneities or other complexities will
likely require the TBCC or other models in which the plume boundary is precisely defined.
Since this may not be a viable alternative with respect to computational cost, we offer the
MFO approach. We have shown that the MFO approach is a comparable method and thus
may be a reasonable method for the solution of groundwater remediation problems. To
further investigate its usefulness in this case, we plan to extend our study to consider more
representative physical models and simulators and to incorporate real-site data.
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Model Cost % Decrease mf2k calls mt3d calls
FBHC $24,175 69.2% 117 0
TBCC $20,362 74.1% 188 160
MFO $22,428 71.5% 152 86

Table 5.2. Comparison of results from solving a groundwater re-
mediation problem using three different models. The first column
gives the model used in the problem statement while the remaining
four columns give the corresponding performance information.
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Figure 5.5. Graph showing the reduction in the groundwater re-
mediation cost function versus the number of APPSPACK itera-
tions. The solid blue line and green dashed lines correspond to the
solutions of the TBCC and the FBHC models, respectively, solved
with APPSPACK 4.0. The red dot-dash line corresponds to solv-
ing the problem using the MFO approach. Note that the significant
decrease corresponding to the red dot (at iteration 4) was the result
of and inner loop calculation.
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Chapter 6

Conclusions and Future Work

In this paper, we have described an approach to multifidelity optimization based on asyn-
chronous parallel pattern search and space mapping. Two important features of our ap-
proach are: (i) it is provably convergent and (ii) the number of design variables between
models of differing fidelity may be non-equivalent in both number and type. Our MFO
scheme was implemented using the existing APPSPACK software and a customized or-
acle. This oracle is composed of a series of scripts that control the calculation of the
space mapped low fidelity optimization calculation. This report describes the implementa-
tion details and illustrates our success for a set of test problems including polynomial and
multi-variable Rosenbrock and for two engineering science applications– earth penetrators
and groundwater remediation.

Throughout the course of this work, some topics of interest arose that we were unfortu-
nately unable to touch upon. Future work in this area should consider them. For example,
a more generic and dynamic mapping could be developed through the use of data mining.
In this case, the selection of the space mapping terms would be based on both past and
runtime calculations, and the space mapping formulation would be improved at each run
of the application. Another approach might include 1st and 2nd order corrective models
in the mapping terms as done in [29]. Note that this would require intermittent calls to
fixed patterns in order to calculate the derivate terms, and therefore, a more generic oracle
implementation would be needed.

Currently, our MFO scheme is a set of standalone scripts that work in conjunction
with APPSPACK. We believe it would be beneficial to incorporate our scheme into the
DAKOTA toolkit. Future engineering science applications of our MFO algorithm include
an extended set of groundwater problems that may contain a model of Long Island cur-
rently being developed at SUNY-Buffalo. In addition, there are many relevant optimization
problems for circuit and device model codes at Sandia.
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Appendix A

Inner Loop Scripts

Here, we give explicit examples of scripts written to carry out our MFO scheme. These
scripts are included to elucidate some of difficult details found in this document. All scripts
were executed in a csh environment. Both PERL commands and Java calls to external
parsers (for generating the aprepro type files) were used. The following scripts and files
were included in the top level directory structure:
 high fi script – calculates the high fidelity response.
 low fi script – calculates the low fidelity response.
 interface template script – placeholder for many of the default advanced user options

(changes made be expert users only).
 mfo script – primary multifidelity optimization script.
 RUN MFO SCRIPT – high level run script.
 USER INTERFACE SCRIPT – placeholder for options that are to be modified by
the user for each application.
 APPSPACK INPUT FILE – APPSPACK input file.
 response template.txt – m4 file used to extract the relevant response values.
 templatedir highfi – directory containing files required to complete a high fidelity
function calculation.

– high fi input template.txt – file containing function input in aprepro format.

– ParseFileToAprepro.class – java parser file that creates many of the aprepro
files.

– application specific auxiliary files required for a high fidelity calculation; in-
cludes simulators.
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 templatedir lowfi – directory containing files required to complete a low fidelity
function calculation.

– low fi input template.txt – file containing function input in aprepro format.

– ParseFileToAprepro.class

– application specific auxiliary files including simulators.
 templatedir ls – directory containing support files for the least squares calculation
that is part of the space mapping routine.

– dakota least square template dependent.in – DAKOTA run file.

– least squares script dependent – script file called directly by DAKOTA to do
least squares calculation.

– ParseFileToAprepro.class
 templatedir norm – directory containing support files for the normalization routine.

– dakota param template 1.in – script for completing a simple run of multiple
low fidelity responses.

– normalization template 1.txt – script that calculates the normalization constant.
 templatedir opt – directory for storing the support files necessary to do space mapped
low fidelity optimization calculation.

– apps run script template – script that converts the APPSPACK input file to an
aprepro style file.

– appsinput template.apps – template of the APPSPACK input file.

– dakota lowfi opt template.in – template of the DAKOTA run option.

– ParseFileToAprepro.class

In the remainder of the Appendix, we include examples of the scripts mentioned above.
The examples shown are customized for the groundwater remediation problem discussed
in Section 5.2.

A.1 Main Execution Script

The top level run script is RUN MFO SCRIPT which is a user modifiable script. This
script controls the entire MFO process by making the initial call to APPSPACK. Therefore,
both the apps input file and the executable call must be set appropriately. Note that this
script assumes that the user will execute the parallel version of APPSPACK.
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BEGIN RUN MFO SCRIPT

#!/bin/csh -f
################################################################
# the following arguments are called for from script in APPSPACK
# argv[1] = input file name
# argv[2] = output file name
# argv[3] = tag
# argv[4] = message (yes or no)
# argv[5] = fidelity
# argv[6] = number of variables
# argv[7..n] = tag name for each variable
################################################################

#-----------------------------------------------------
# USER MODIFICATION SECTION
#-----------------------------------------------------

## set the name of the apps input file
set apps_input_file = "groundwater.apps"

# set the file that the apps output to screen will be piped into
set apps_output_file = "groundwater.out"

# set the number of processors
@ number_processors = 4

# set the apps executable (include path if necessary)
set apps_exe = "/home/gagray/appspack/src/appspack_mpi"

##############################################################
##############################################################
##############DO NOT MAKE ANY CHANGES BELOW HERE
##############################################################
##############################################################

#
# do some checking of the apps input file
#

# check that cache output file is set to apps_cache
fgrep -w "Cache Output File" $apps_input_file >! tmp.apps
fgrep -w "apps_cache" tmp.apps >! tmp2.apps
set num_file_lines = ‘less tmp2.apps | wc -l‘
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if ($num_file_lines == 0) then
echo "***** RUN_MFO_SCRIPT ERROR *****"
echo \"Cache Output File\" "must be set to" \"apps_cache\" \\
"for the MFO routine to work correctly. \\
Please add or reset this option."

exit
endif

#check that correct interface script is used
fgrep -w "Executable Name" $apps_input_file >! tmp.apps
fgrep -w "USER_SCRIPT" tmp.apps >! tmp2.apps
set num_file_lines = ‘less tmp2.apps | wc -l‘

if ($num_file_lines == 0) then
echo "***** RUN_MFO_SCRIPT ERROR *****"
echo \"Executable Name\" "must be set to" \"USER_SCRIPT\" \\
"for the MFO routine to work correctly. \\
Please add or reset this option."

exit
endif

# set up the USER_SCRIPT script for the given apps input file
rm -f USER_SCRIPT
m4 -DAPPS_INPUT_FILE="$apps_input_file" \\

-DAPPS_OUTPUT_FILE="$apps_output_file" \\
USER_INTERFACE_SCRIPT >! USER_SCRIPT

chmod a+x USER_SCRIPT

#
# do some clean up
#
if ( -e number_calcs) rm number_calcs
rm tmp.apps tmp2.apps
rm -f interface_script_*

#
# begin execution of appspack in background
#
mpirun -np $number_processors $apps_exe $apps_input_file \\

>! $apps_output_file &

END RUN MFO SCRIPT
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A.2 User Interface Scripts

This section contains the scripts that require application specific modifications by the user.
The low fi script and high fi script only require changes for a certain applications. The
USER INTERFACE SCRIPT is the primary file for user options of the MFO scheme.

A.2.1 User Input Scripts

The user interface script, USER INTERFACE SCRIPT, controls the run options of the
MFO calculations. Most of the user modifications are done in this top level script file.
Some advanced user options are defined in interface script (not shown here). A cleaner
implementation should be done in the future so that all user options are defined in a single
input file.

BEGIN USER INTERFACE SCRIPT

#!/bin/csh -f
#
#
# This script is the inner loop of the MFO algorithm w/Space Mapping
# and is called by an APPSPACK worker node (NOTE: this may be
# generalized as an inner loop for GA as well)
#
# The following arguments are passed directly from APPSPACK
# argv[1] = function input file name
# argv[2] = function output file name
# argv[3] = function input tag number
#
#####################################################
#####################################################
#####################################################
###### PRE-PROCESSING SECTION DO NOT CHANGE
#####################################################
#####################################################
# macros set up for the m4 call
# changequote(,) removes the dependence on ‘ as a quote character
changequote(,)
set apps_input_file = "APPS_INPUT_FILE"
set apps_output_file = "APPS_OUTPUT_FILE"

set apps_input = $argv[1]
set apps_output = $argv[2]
set apps_tag = $argv[3]
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#####################################################
#####################################################
######USER MODIFICATIONS REQUIRED IN THIS SECTION
#####################################################
#####################################################
### SET the number of responses and the minimum number of
# calculations between each inner loop call (min_calcs)
@ num_responses = 2
@ min_calcs = 2

### SET the high fidelity variable tags
# high_var_tag_option = <sequential|explicit>
# - sequential - the single tag name, defined in high_var_tag,
# will have a sequential number (starting at 0)
# appended to the end of the tag
# - explicit - all tags defined by the user in high_var_tag
#
# high_var_tag - if sequential, place a single tag value
# if explicit, place the tags in arrays
# (tag_1 tag_2 tag_3 ...)

set high_var_tag_option = sequential
set high_var_tag = x

### SET the number of variables, variable tags, and value ranges
# for the low fidelity models
#
# low_var_tag_option = <one_to_one|sequential|explicit>
# - one_to_one - one to one mapping from high to low so
# parameters are defined equivalently.
# - sequential - the single tag name defined in low_var_tag will
# have a sequential number (starting at 0)
# appended to the end of the tag.
# - explicit - all tags defined by user in low_var_tag
#
# num_low_var = number of low fidelity model variables; Note that
# this need not be equivalent to the number of high
# fidelity variables & thus must be defined except
# for the one_to_one case
#
# low_var_tag = if sequential defined, place a single tag value
# if explicit defined, place the tags in arrays
# (tag_1 tag_2 tag_3 ...).
# not needed if one_to_one is set.
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set low_var_tag_option = one_to_one
#set num_low_var = 12
#set low_var_tag = x

### SET the space mapping parameter tags and values used for fitting
### SET the range and init values of the fitting parameters
#
# Choose one of the following three
# (depends on the number of space map vars)
#
# space_map_tag_option = <global|explicit>
# - global - the low/high/init values are equivalently defined for
# a given space_map_tag for all variables
# - explicit - all tags must be defined by user in space_map_tag
# and all associated low/high/inti values. Note: each
# design variable is assigned to each space param tag.
#
# num_space_map = the number of space parameter; if global,
# no need to set this parameter
#
# space_map_tag = If global, define each space_map_tag without
# the high_var_tag appendix Ex. (alpha, beta)
# If explicit, every space_map_tag in the
# high_var_tag appendix must be defined.
# Ex. (alpha_x0 alpha_x1 beta_x0 beta_x1)
#
# space_map_low = lower bounds of space_map_tag.
# If global, define each value in the order of
# space_map_tag Ex. (alpha, beta) -> (0.0 1.0)
# If explicit, define each value in the order of
# space_map_tag
# Ex. (alpha_x0 alpha_x1 beta_x0 beta_x1) ->
# (0.0 0.0 1.0 1.0)
#
# space_map_high = higher bounds of the space_map_tag. See
# space_map_low for specifications.
#
# space_map_init = initial value of the space_map_tag. See
# space_map_low for specifications.
#
######### alpha
set space_map_tag_option = global
set space_map_tag = (alpha)
set space_map_high = (10)
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set space_map_low = (0.5)
set space_map_init = (1.0)

######### alpha and gamma
#set space_map_tag_option = global
#set space_map_tag = (alpha gamma)
#set space_map_low = (0.5 0.5)
#set space_map_high = (10.0 10.0)
#set space_map_init = (1.0 1.0)

######### alpha, gamma, and beta
#set space_map_tag_option = global
#set space_map_tag = (alpha gamma beta)
#set space_map_low = (0.5 0.5 1.0)
#set space_map_high = (10.0 10.0 2.0)
#set space_map_init = (1.0 1.0 1.0)

### SET the low-fidelity optimization strategy
#set opt_strategy = grad
set opt_strategy = apps

#####################################################
#####################################################
##############DO NOT MAKE ANY CHANGES BELOW HERE
#####################################################
#####################################################
# get the number of high fidelity variables and the
# initial best point from the apps function input file
# which has the following format:
#
# <number_variables>
# <variable_1>
# .
# .
# <variable_n>
# <yes|no>

set value = ‘less $apps_input‘
set num_high_var = $value[1]

# create a string with all high fi vars (high_var_tag_string)
switch ($high_var_tag_option)
case sequential:

@ ii = 0
set high_var_tag_string = " "
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while ($ii < $num_high_var)
set high_var_tag_index = \\

‘perl -e "{ print $high_var_tag . $ii }"‘
set high_var_tag_string = ‘echo "$high_var_tag_string \\

$high_var_tag_index "‘
@ ii++

end
breaksw

case explicit:
if ($num_high_var != $#high_var_tag) then

echo "***** USER_INTERFACE_SCRIPT ERROR *****"
echo "the number of high_var_tag should equal \\
$num_high_var but is currently equal to \\
$#high_var_tag. Please edit this parameter."

exit
endif
set high_var_tag_string = ‘echo " $high_var_tag "‘
breaksw

default:
echo ***** USER_INTERFACE_SCRIPT ERROR *****"
echo "An improper high_var_tag_option has been set to \\
$high_var_tag_option. Please change to sequential or explicit."
exit
breaksw

endsw

# create a string with all the low fi variables (low_var_tag_string)
switch ($low_var_tag_option)
case one_to_one:

set num_low_var = $num_high_var
set low_var_tag_string = ‘echo "$high_var_tag_string"‘
breaksw

case sequential:
if (!($?num_low_var)) then

echo ***** USER_INTERFACE_SCRIPT ERROR *****"
echo "The num_low_var must be set with the sequential \\

option, please set this variable"
exit

endif
if (!($?low_var_tag)) then

echo ***** USER_INTERFACE_SCRIPT ERROR *****"
echo "The low_var_tag must be set with the sequential option, \\
please set this variable"
exit

endif
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@ ii = 0
set low_var_tag_string = " "
while ($ii < $num_low_var)

set low_var_tag_index = \\
‘perl -e "{ print $low_var_tag . $ii }"‘

set low_var_tag_string = ‘echo "$low_var_tag_string \\
$low_var_tag_index "‘

@ ii++
end
breaksw

case explicit:
if (!($?num_low_var)) then

echo ***** USER_INTERFACE_SCRIPT ERROR *****"
echo "the num_low_var must be set with the explicit \\

option, please set this variable"
exit

endif
if (!($?low_var_tag)) then

echo ***** USER_INTERFACE_SCRIPT ERROR *****"
echo "the low_var_tag must be set with the explicit \\

option, please set this variable"
exit

endif
if ($num_low_var != $#low_var_tag) then

echo ***** USER_INTERFACE_SCRIPT ERROR *****"
echo "the number of low_var_tag should equal $num_low_var \\
but is currently equal to $#low_var_tag. \\
Please edit this parameter."

exit
endif
set low_var_tag_string = ‘echo " $low_var_tag "‘
breaksw

default:
echo ***** USER_INTERFACE_SCRIPT ERROR *****"
echo "An improper low_var_tag_option has been set to \\

$low_var_tag_option. Please change to one_to_one, \\
sequential or explicit."

exit
breaksw

endsw

# create a list of space parameter strings
set space_map_tag_string = " "
set space_map_low_string = " "
set space_map_high_string = " "
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set space_map_init_string = " "

# create a string with all space map vars (space_map_tag_string)
switch ($space_map_tag_option)
case global:

# set the number of space parameters
set num_space_map_tag = $#space_map_tag
@ num_space_map = $num_high_var * $num_space_map_tag

# make sure the number of values is equivalent to the number
# of parameters
if ($num_space_map_tag != $#space_map_high) then

echo ***** USER_INTERFACE_SCRIPT ERROR *****"
echo "the number of space_map_high parameters should equal \\
$num_space_map_tag but is currently equal to \\
$#space_map_high. Please edit this parameter."

exit
endif

if ($num_space_map_tag != $#space_map_low) then
echo ***** USER_INTERFACE_SCRIPT ERROR *****"
echo "the number of space_map_low parameters should equal \\
$num_space_map_tag but is currently equal to \\
$#space_map_low. Please edit this parameter."

exit
endif

if ($num_space_map_tag != $#space_map_init) then
echo ***** USER_INTERFACE_SCRIPT ERROR *****"
echo "the number of space_map_init parameters should equal \\
$num_space_map_tag but is currently equal to \\
$#space_map_init. Please edit this parameter."

exit
endif

# set the space_map_strings
@ ii = 0
while ($ii < $num_space_map_tag)

@ jj = 0
while ($jj < $num_high_var)

@ iindex = $ii + 1
@ jindex = $jj + 1
set space_map_tag_index = \\
‘perl -e "{ print $space_map_tag[$iindex] . _ . \\
$high_var_tag_string[$jindex] }"‘
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set space_map_tag_string = \\
‘echo "$space_map_tag_string $space_map_tag_index "‘
set space_map_high_string = \\
‘echo "$space_map_high_string $space_map_high[$iindex] "‘
set space_map_low_string = \\
‘echo "$space_map_low_string $space_map_low[$iindex] "‘
set space_map_init_string = \\
‘echo "$space_map_init_string $space_map_init[$iindex] "‘
@ jj++

end
@ ii++

end

breaksw
case explicit:

#error checks
if (!($?num_space_map)) then

echo ***** USER_INTERFACE_SCRIPT ERROR *****"
echo "the parameter num_space_map must be set when explicit \\
is set as space_map_tag_option. Please edit this parameter."

exit
endif

if ($num_space_map != $#space_map_tag) then
echo ***** USER_INTERFACE_SCRIPT ERROR *****"
echo "the number of space_map_tag parameters should equal \\
$num_space_map but is currently equal to \\
$#space_map_tag. Please edit this parameter."

exit
endif

if ($num_space_map != $#space_map_high) then
echo ***** USER_INTERFACE_SCRIPT ERROR *****"
echo "the number of space_map_high parameters should equal \\
$num_space_map but is currently equal to \\
$#space_map_high. Please edit this parameter."

exit
endif

if ($num_space_map != $#space_map_low) then
echo ***** USER_INTERFACE_SCRIPT ERROR *****"
echo "the number of space_map_low parameters should equal \\
$num_space_map but is currently equal to \\
$#space_map_low. Please edit this parameter."
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exit
endif

if ($num_space_map != $#space_map_init) then
echo ***** USER_INTERFACE_SCRIPT ERROR *****"
echo "the number of space_map_init parameters should equal \\
$num_space_map but is currently equal to \\
$#space_map_init. Please edit this parameter."

exit
endif

# set the variables
set space_map_tag_string = ‘echo " $space_map_tag "‘
set space_map_high_string = ‘echo " $space_map_high "‘
set space_map_low_string = ‘echo " $space_map_low "‘
set space_map_init_string = ‘echo " $space_map_init "‘

breaksw
default:

echo ***** USER_INTERFACE_SCRIPT ERROR *****"
echo "An improper space_map_tag_option has been set to \\
$space_map_tag_option. Please change to global or explicit."
exit
breaksw

endsw

# get the low_fi bounds and best point
# NOTE: should be moved into a separate script in the future

# set the init value to the current best point
set low_var_init_string = " "
set low_var_high_string = " "
set low_var_low_string = " "
set low_value_low = ‘fgrep -w "Lower" $apps_input_file‘
set low_value_high = ‘fgrep -w "Upper" $apps_input_file‘

# error checks
@ num_low_var_init_current = $#value - 2
@ num_low_var_high_current = $#low_value_low - 3
@ num_low_var_low_current = $#low_value_high - 3

if ($num_low_var != $num_low_var_init_current) then
echo ***** USER_INTERFACE_SCRIPT ERROR *****"
echo "the number of low_var_init parameters should equal \\

$num_low_var but is currently equal to \\
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$num_low_var_init_current. \\
There may be an error within $apps_input."

exit
endif

if ($num_low_var != $num_low_var_high_current) then
echo ***** USER_INTERFACE_SCRIPT ERROR *****"
echo "the number of low_var_high parameters should equal \\

$num_low_var but is currently equal to \\
$num_low_var_high_current. \\
There may be an error within $apps_input_file."

exit
endif

if ($num_low_var != $num_low_var_low_current) then
echo ***** USER_INTERFACE_SCRIPT ERROR *****"
echo "the number of low_var_low parameters should equal \\

$num_low_var but is currently equal to \\
$num_low_var_low_current. \\
There may be an error within $apps_input_file."

exit
endif
# set the values
@ ii = 0
while ($ii < $num_high_var)

@ iindex = $ii + 2
@ jindex = $ii + 4
set low_var_init_string = \\
‘echo "$low_var_init_string $value[$iindex] "‘
set low_var_high_string = \\
‘echo "$low_var_high_string $low_value_high[$jindex] "‘
set low_var_low_string = \\
‘echo "$low_var_low_string $low_value_low[$jindex] "‘
@ ii++

end

#create interface_script_tag
m4 -DHIGH_VAR_TAG_STRING="$high_var_tag_string" \\
-DLOW_VAR_TAG_STRING="$low_var_tag_string" \\
-DSPACE_MAP_TAG_STRING="$space_map_tag_string" \\
-DSPACE_MAP_HIGH_STRING="$space_map_high_string" \\
-DSPACE_MAP_LOW_STRING="$space_map_low_string" \\
-DSPACE_MAP_INIT_STRING="$space_map_init_string" \\
-DNUM_HIGH_VAR="$num_high_var" \\
-DNUM_LOW_VAR="$num_low_var" \\

81



-DNUM_SPACE_MAP="$num_space_map" \\
-DLOW_VAR_HIGH_STRING="$low_var_high_string" \\
-DLOW_VAR_LOW_STRING="$low_var_low_string" \\
-DLOW_VAR_INIT_STRING="$low_var_init_string" \\
interface_template_script >! interface_script_$apps_tag

chmod a+x interface_script_$apps_tag

# call interface_script_tag
interface_script_$apps_tag $apps_input $apps_output \\
$apps_tag $num_responses $min_calcs $opt_strategy

# remove the interface script when finished
rm interface_script_$apps_tag

END USER INTERFACE SCRIPT

A.2.2 Low Fidelity Model Scripts

This section includes the low fidelity script file for the groundwater remediation problem.
Note that there are only two lines of the script that require user modification. Therefore,
future work would include moving these modifications to the top level user scripts.

BEGIN low fi script

#!/bin/csh -f
#
##########################################################
# $argv[1] is params.in.(fn_eval_num) from DAKOTA
# $argv[2] is results.out.(fn_eval_num) returned to DAKOTA
##########################################################

#------------------------------------------------
# PRE-PROCESSING : NO USER MODIFICATIONS REQUIRED
#------------------------------------------------

set num = ‘echo $argv[1] | cut -c 11-‘

cp -r templatedir workdir.$num
mv $argv[1] workdir.$num/dakota_vars
cd workdir.$num

82



# run a different executable if least squares option is passed
# into this script (argv[3] == "ls")
set executable = APPSfbhc
if (($#argv > 2) && ($argv[3] == "ls")) \\

set executable = APPSfbhc_ls

# --------
# ANALYSIS AND OUTPUT
# --------

##################################################
# --------- USER MODIFICATION REQUIRED -----------
##################################################
# Change the file templatedir_lowfi/low_fi_input_template.txt
# so that low_fi_input.in is in the appropriate format for
# your application; No further applications are needed
aprepro -qW low_fi_input_template.txt temp_response
perl -ne ’{print unless /ˆ\s*$/o}’ temp_response > low_fi_input.in
rm temp_response

##################################################
# --------- USER MODIFICATION REQUIRED -----------
##################################################
# add the appropriate low fidelity executable call below
./$executable low_fi_input.in response.txt $num

##################################################
# NO USER MODIFICATIONS REQUIRED BELOW HERE
##################################################

# places response.txt into dakota file
cat response.txt > $argv[2]

# NOTE: moving $argv[2] at the end of the script avoids any
# problems with read race conditions
# (although master-slave does not have this problem).
mv $argv[2] ../.
cd ..

# -------------
# CLEANUP
# -------------
rm -rf workdir.$num

END low fi script
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A.2.3 High Fidelity Model Scripts

Below is the high fidelity script file for the groundwater remediation problem. As with the
low fidelity script, there are only two possible lines for user modification, and the plan is to
move this to the top level user scripts in the future.

BEGIN hi fi script

#!/bin/csh -f
################################################################
# the following arguments are called for this script in APPSPACK
# argv[1] = input file name
# argv[2] = output file name
# argv[3] = tag
# argv[4] = message (yes or no)
# argv[5] = fidelity
# argv[6] = number of variables
# argv[7..n] = tag name for each variable
################################################################

#-----------------------------------------------------
# PRE-PROCESSING
# NO USER MODIFICATIONS REQUIRED IN THIS SECTION
#-----------------------------------------------------

## just set num to the tag value
set num = $argv[3]
set message = $argv[4]
set fidelity = $argv[5]
set number_var = $argv[6]
@ start_index = 7

# be sure to set unique directories
while ( -e workdir_$fidelity.$num)

set num = $num.$argv[3]
end

# cp the templatedir and needed files into
cp -r templatedir_$fidelity workdir_$fidelity.$num
mv $argv[1] workdir_$fidelity.$num
cp response_template.txt workdir_$fidelity.$num
cd workdir_$fidelity.$num

# create a string list of variables
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@ iv = 0
set var_string = " "
while ($iv < $number_var)

@ var_index = $iv + $start_index
set var_string = ‘echo "$var_string $argv[$var_index] "‘
@ iv++

end

## process the appspack input file into a aprepro file
java ParseFileToAprepro input $argv[1] $number_var \\

$var_string dakota_vars

# -------------------
# ANALYSIS AND OUTPUT
# --------------------

#######################################################
# --------- USER MODIFICATION REQUIRED -----------
#######################################################
# NOTE: Modify templatedir_highfi/high_fi_input_template.txt
# so that high_fi_input.in has the appropriate format for your
# application; No other modification required below
aprepro -qW high_fi_input_template.txt temp_response
perl -ne ’{print unless /ˆ\s*$/o}’ temp_response > high_fi_input.in
rm temp_response

#######################################################
# --------- USER MODIFICATION REQUIRED -----------
#######################################################
# add the appropriate high fidelity executable call below
/home/gagray/groundwater/apps-call/APPSComHC high_fi_input.in \\
response.txt $argv[3]

########################################################
#NO USER MODIFICATIONS REQUIRED BELOW
########################################################
#cat all require values into the dakota output file
echo $message > message.txt
cat response.txt message.txt > $argv[2]
cp $argv[2] ../.

switch ($message)
case yes:

85



# place each parameter value within file
@ ii = 0
while ($ii < $number_var)

@ varindex = $ii + $start_index

m4 -DVAR_FILE="dakota_vars" -DVAR_NAME=$argv[$varindex] \\
response_template.txt > temp_file.txt

aprepro temp_file.txt temp.new
grep -vi aprepro temp.new > temp_.new

# removes Aprepro line and first blank line
perl -ne \\

’{print unless /ˆ\s*$/o}’ temp_.new | cat >> point.$argv[3]

@ ii++
end

# make point file writable by everyone in case job hangs & point
# file is left in tmp directory
chmod a+w point.$argv[3]
mv point.$argv[3] /tmp/point.$argv[3]
breaksw

case no:
breaksw

endsw

# move back out of the work directory
cd ..

# -------------
# CLEANUP
# -------------

#rm -rf workdir_$fidelity.$num

END hi fi script
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A.3 Multifidelity Optimization Script

This script is the primary control script of the MFO calculation, and it directly calls most of
the other scripts. If additional optimization schemes or mapping approaches are developed
in the future, this script will encapsulate these changes.

BEGIN mfo script

#!/bin/csh -f
#
####################################################################
# This script is the inner loop of the MFO algorithm w/Space Mapping
# and is called by an APPSPACK worker (NOTE: this may be generalized
# as an inner loop for GA as well)
#
# the arguments are
# argv[1] = input file name
# argv[2] = output file name
# argv[3] = tag
# argv[4] = message (yes or no)
# argv[5] = fidelity
# argv[6] = response tag
# argv[7] = number of low fidelity variables
# argv[8..n1] = tag name for each low fidelity variable
# argv[n1+1] = number of high fidelity variables
# argv[(n1+1)..n2] = tag name for each high fidelity variable
####################################################################
##### NO USER MODIFICATIONS IN THIS SCRIPT #########################
####################################################################

# make an inner loop directory an place everything within here
## get all argv values a name in case additional values are added
set num = $argv[3]
set message = $argv[4]
set fidelity = $argv[5]
set normalization = $argv[6]
set response_tag = $argv[7]
set number_responses = $argv[8]
set opt_strategy = $argv[9]
set ls_calc_type = $argv[10]
set num_high_var = $argv[11]
@ start_high_index = 12
@ low_index_var = $start_high_index + $num_high_var
@ start_low_index = $low_index_var + 1
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set num_low_var = $argv[$low_index_var]
@ space_param_index_var = $start_low_index + ($num_low_var * 4)
@ start_space_param_index = $space_param_index_var + 1
set num_space_param = $argv[$space_param_index_var]

while ( -e inner_loop.$num)
set num = $num.$argv[3]

end

# move template, cache, and script files into inner loop
mkdir innerloop.$num
cp response_template.txt innerloop.$num
cp apps_cache innerloop.$num
cp low_fi_script innerloop.$num

cd innerloop.$num

#---------------
# Get APPSPACK data
#---------------

# get the apps data (the high fidelity model runs) and make aprepro
# friendly file named apps_out_vars
cp -f ../templatedir_$fidelity/ParseFileToAprepro.class .

# create a string with all high fi variables (high_var_tag_string)
@ iv = 0
set high_var_tag_string = " "
while ($iv < $num_high_var)

@ var_index = $iv + $start_high_index
set high_var_tag_string = ‘echo "$high_var_tag_string \\

$argv[$var_index] "‘
@ iv++

end

# create a string with all the low fi variables (low_var_tag_string)
@ iv = 0
set low_var_tag_string = " "
set low_var_tag_wparen_string = " "
set low_var_low_string = " "
set low_var_high_string = " "
set low_var_init_string = " "
while ($iv < $num_low_var)
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@ varindex = $iv + $start_low_index
set low_var_tag_string = ‘echo "$low_var_tag_string \\

$argv[$varindex] "‘
set low_var_tag_wparen_string = \\

‘echo "$low_var_tag_wparen_string ’$argv[$varindex]’ "‘
@ varindex += $num_low_var
set low_var_low_string = ‘echo "$low_var_low_string \\

$argv[$varindex] "‘
@ varindex += $num_low_var
set low_var_high_string = ‘echo "$low_var_high_string \\

$argv[$varindex] "‘
@ varindex += $num_low_var
set low_var_init_string = ‘echo "$low_var_init_string \\

$argv[$varindex] "‘

@ iv++
end

# create list of var string values to be used in script
@ m=0
set hifi_design_value_string = " "
while ($m < $number_responses)

@ mindex = $m + 1
@ j=0

while ($j < $num_high_var)
@ varindex = $j + $start_high_index
# set design_var to current design variable
set design_var = $argv[$varindex]
# concatenate string values into design variable index values
set designVarIndex = ‘perl -e \\

"{ print $design_var . _ . $mindex }"‘
# create design variable value string
set hifi_design_value_string = \\

‘echo "$hifi_design_value_string { $designVarIndex } "‘
@ j++

end
@ m++

end

# create a list of space mapping var string values
set space_map_tag_string = " "
set space_map_low_string = " "
set space_map_high_string = " "
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set space_map_init_string = " "

@ j=0
while ($j < $num_space_param)

@ varindex = $j + $start_space_param_index
# set space mapping strings
set space_map_tag_string=‘echo "$space_map_tag_string \\

$argv[$varindex]’ "‘
@ varindex += $num_space_param
set space_map_low_string=‘echo "$space_map_low_string \\

$argv[$varindex] "‘
@ varindex += $num_space_param
set space_map_high_string=‘echo "$space_map_high_string \\

$argv[$varindex] "‘
@ varindex += $num_space_param
set space_map_init_string=‘echo "$space_map_init_string \\

$argv[$varindex] "‘
@ j++

end

# debug output
##echo "high fidelity tags = $high_var_tag_string"
##echo "low fidelity tags = $low_var_tag_string"
##echo "low fidelity low values = $low_var_low_string"
##echo "low fidelity high values = $low_var_high_string"
##echo "low fidelity init values = $low_var_init_string"
##echo "space mapping tags = $space_map_tag_string"
##echo "space mapping low values = $space_map_low_string"
##echo "space mapping high values = $space_map_high_string"
##echo "space mapping init values = $space_map_init_string"

# NOTE: THIS SHOULD BE CHANGED TO cache_message IN THE FUTURE AND
# THE PARSER SHOULD LOOK FOR NUMBER TAG
java ParseFileToAprepro cache apps_cache $num_high_var \\
$high_var_tag_string apps_out_vars $response_tag $number_responses

#---------------
# Run Normalization Calculation (between high and low fidelity model)
#---------------

switch($normalization)
case on:

# move all appropriate files to a new workdir_norm_$jindex
# now a single normalization directory
cp -r ../templatedir_norm workdir_norm
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cp apps_out_vars workdir_norm
cp low_fi_script workdir_norm
cp ../templatedir_lowfi/* workdir_norm
cp -r ../templatedir_lowfi workdir_norm/templatedir
cp apps_out_vars workdir_norm/templatedir
cd workdir_norm

# calculate normalization constant and tag unto apps_out_vars

# get the list of var string names
@ iv = 0
set dakota_var_string = " "
while ($iv < $num_high_var)

@ var_index = $iv + $start_high_index
set dakota_var_string = ‘echo "$dakota_var_string ’\\

$argv[$var_index]’ "‘
@ iv++

end

# add DESIGN_VALUES and DESIGN_VARS terms
m4 -DDESIGN_VARS="$dakota_var_string" \\

-DDESIGN_VALUES="$hifi_design_value_string" \\
dakota_param_template_1.in > dakota_param_template.in

# cleanup
rm -f dakota_param_template_*.in

# substitute values from aprepro file
aprepro -qW dakota_param_template.in dakota_param.in

# do parameter study
dakota -input dakota_param.in >>&! dakota_param.out

# place response values in aprepro format (normalization_vars)
java ParseFileToAprepro dakota_tabular_table \\

dakota_tabular.dat 0 normalization_vars

# loop over and average sum of ratio of low & high fidelity
# response

@ n=0
while ($n < $number_responses)
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@ nindex = $n + 1
@ nindexp1 = $nindex + 1

# insert the design variable
m4 -DRATIO_$nindex="\\

(response_$nindex / response_fn1_$nindex) \\
+ RATIO_$nindexp1" normalization_template_$nindex.txt \\
> normalization_template_$nindexp1.txt

@ n++
end

# clear out RATIO tags from the last insertion
m4 -DRATIO_$nindexp1="0.0" \\

normalization_template_$nindexp1.txt \\
> normalization_template.txt

# substitute values from aprepro file
aprepro -qW normalization_template.txt normal_out_vars

# cleanup
rm -f normalization_template_*.txt
# add normalization variable to apps_out_vars and cp in
# directory above
cat normal_out_vars apps_out_vars > apps_out_vars_modified
cp apps_out_vars_modified ../apps_out_vars

cd ..
breaksw # case(on)
case off:

# set the normalization_factor to 1.0
echo "{ normalization_factor = 1.0 }" > normal_out_vars

# add normalization variable to apps_out_vars
cat normal_out_vars apps_out_vars > apps_out_vars_modified
cp apps_out_vars_modified apps_out_vars

breaksw # case (off)
endsw # switch($normalization)

#---------------
# Run Least Squares Calculation
#---------------
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switch($ls_calc_type)
case independent:

#
# BEGIN LOOP HERE FOR MULTIPLE DESIGN VARIABLES
#

@ j=0
while ($j < $num_low_var)

@ jindex = $j + 1
@ jindexp1 = $jindex + 1
@ varindex = $j + $start_low_index

# set design_var to current design variable
set design_var = $argv[$varindex]

#---------------
# Run Least Squares Calculation
#---------------

# move all least squares files to a new workdir_ls_$jindex
cp -r ../templatedir_ls workdir_ls_$jindex
cp apps_out_vars workdir_ls_$jindex
cp response_template.txt workdir_ls_$jindex
cp -r ../templatedir_lowfi workdir_ls_$jindex/templatedir
cp apps_out_vars workdir_ls_$jindex/templatedir
cd workdir_ls_$jindex

# convert dakota_least_squares_template.in to
# dakota_least_squares.in; insert appropriate design
# variable and response values of high

# fidelity model to do least squares calculation

@ i=0

while ($i < $number_responses)

@ iindex = $i + 1
@ iindexp1 = $iindex + 1

# concatenate string values into design variable
# index values

set designVarIndex = ‘perl -e \\
"{ print $design_var . _ . $iindex }"‘
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# insert the design variable values and descriptors
m4 -DCSV_VALUES_$iindex="{$designVarIndex} \\

CSV_VALUES_$iindexp1" \\
-DCSV_DESCRIPTORS_$iindex="’$designVarIndex’ \\
CSV_DESCRIPTORS_$iindexp1" \\
dakota_least_squares_template_$iindex.in \\
> dakota_least_squares_template_$iindexp1.in

@ i++
end

# clear out CSV tags from last insertion
m4 -DCSV_VALUES_$iindexp1 -DCSV_DESCRIPTORS_$iindexp1 \\
dakota_least_squares_template_$iindexp1.in > \\

dakota_least_squares_template_temp.in

# add CSV_TAGE
m4 -DCSV_TAG="design_variable_$jindex" \\
dakota_least_squares_template_temp.in > \\

dakota_least_squares_template.in

# cleanup
rm -f dakota_least_squares_template_*.in

# substitute values from aprepro file
aprepro -qW dakota_least_squares_template.in \\

dakota_least_squares.in

# do least squares calculation
dakota -input dakota_least_squares.in \\

>>&! dakota_least_squares.out

# place alpha, beta, gamma within aprepro friendly format
# (space_mapping_vars)
java ParseFileToAprepro dakota_tabular \\

dakota_tabular.dat 0 space_mapping_vars_$jindex

# move spacing mapping aprepro file up before cleaning dir
cp space_mapping_vars_$jindex ../.
cd ..

@ j++
end
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# remove old space_mapping_vars
rm space_mapping_vars

# cat all the space_mapping_vars files into one
@ jj=0
while ($jj < $num_low_var)

# parameter used for indexing
@ jjindex = 1 + $jj
cat space_mapping_vars_$jjindex >> space_mapping_vars
@ jj++

end # while ($j < $num_low_var)
breaksw #case independent

case dependent:
#---------------
# Run Least Squares Calculation
#---------------

# move all least squares files to a new workdir_ls_
cp -r ../templatedir_ls workdir_ls
cp apps_out_vars workdir_ls
cp response_template.txt workdir_ls
cp low_fi_script workdir_ls
cp -r ../templatedir_lowfi workdir_ls/templatedir
cp apps_out_vars workdir_ls/templatedir

cd workdir_ls

# convert dakota_least_squares_template.in to
# dakota_least_squares.in; insert appropriate design vars &
# response vals of high-fi model to do LS calculation
set space_var_init = " "
set space_var_upper = " "
set space_var_lower = " "
set space_var_descriptor = " "
set design_var_descript = " "

@ i=0
while ($i < $number_responses)

@ iindex = $i + 1

@ j=0
while ($j < $num_low_var)
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@ varindex = $j + $start_low_index

# concatenate string vals into design var index vals
# set designVarIndex = ‘perl -e \\
# "{ print $design_var . _ . $iindex }"‘

set design_var_descript = ‘echo \\
"$design_var_descript ’$argv[$varindex]_$iindex’ "‘

@ j++
end

@ i++
end

set space_var_init = ‘echo "$space_map_init_string"‘
set space_var_lower = ‘echo "$space_map_low_string"‘
set space_var_upper = ‘echo "$space_map_high_string"‘
set space_var_descriptor = ‘echo "$space_map_tag_string"‘
set total_num_space_param = ‘echo "$num_space_param"‘

# insert the design variable values and descriptors
m4 -DCDV_INIT="$space_var_init" -DCDV_LOWER="$space_var_lower" \\
-DCDV_UPPER="$space_var_upper" \\
-DCDV_DESCRIPTOR="$space_var_descriptor" \\
-DDESIGN_VARS="$low_var_tag_string" \\
-DNUM_SPACE_PARAMS="$total_num_space_param"\\
dakota_least_squares_template_dependent.in \\
> dakota_least_squares_template.in

# substitute values from aprepro file
aprepro -qW dakota_least_squares_template.in \\

dakota_least_squares.in

# sourcing .cshrc file, may remove this in future
source ˜/.cshrc

# do least squares calculation
dakota -input dakota_least_squares.in >>&! \\

dakota_least_squares.out

# place alpha, beta, gamma within aprepro friendly format
# (space_mapping_vars)
java ParseFileToAprepro dakota_tabular dakota_tabular.dat 0 \\
space_mapping_vars
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# move spacing mapping aprepro file up before cleaning dir
cp space_mapping_vars ../.
cd ..

breaksw # dependent

case default:
# move default_vars into space_mapping_vars

cp ../templatedir_lowfi/default_vars ./space_mapping_vars

breaksw #dependent

endsw # switch($ls_calc_type)

#---------------
# Optimize the Low Fidelity Model
#---------------
# move all low fidelity model files and space_mapping_vars
# into new workdir_opt
cp -r ../templatedir_opt workdir_opt
cp ../templatedir_lowfi/* workdir_opt
cp -r ../templatedir_lowfi workdir_opt/templatedir
cp space_mapping_vars workdir_opt/templatedir
cp space_mapping_vars workdir_opt/
cp low_fi_script workdir_opt/
cd workdir_opt

switch($opt_strategy)
case grad:

# prepare optimization input file
m4 -DNUM_DESIGN_VAR="$num_low_var" \\

-DCDV_INITIAL="$low_var_init_string" \\
-DCDV_UPPER="$low_var_high_string" \\
-DCDV_LOWER="$low_var_low_string" \\
-DCDV_TAG="$low_var_tag_wparen_string" \\
dakota_lowfi_opt_template.in > dakota_lowfi_temp.in

aprepro -qW dakota_lowfi_temp.in dakota_lowfi_opt.in

# do low fidelity optimization with space mapping variables
dakota -input dakota_lowfi_opt.in >>&! dakota_lowfi_opt.out
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#place low fidelity optimum result within file
java ParseFileToAprepro dakota_tabular dakota_tabular.dat 0 \\

lowfi_optimum_vars

breaksw #grad
case apps:

# append apps_run_script_template file to low_fi_script, so that
# APPSPACK input file is appropriate aprepro format
grep -v "#!" low_fi_script > script_temp

m4 -DNUM_LOW_VAR="$num_low_var" \\
-DLOW_VAR_TAGS="$low_var_tag_string" \\
apps_run_script_template > apps_run_script

cat apps_run_script script_temp > low_fi_script_new
mv low_fi_script_new low_fi_script
chmod a+x low_fi_script
rm apps_run_script script_temp

# prepare optimization input file
m4 -DNUM_DESIGN_VAR="$num_low_var" \\

-DINITIAL_X="$low_var_init_string" \\
-DUPPER_BOUNDS="$low_var_high_string" \\
-DLOWER_BOUNDS="$low_var_low_string" \\
appsinput_template.apps > appsinput_temp.apps

aprepro -qW appsinput_temp.apps appsinput.apps

# do low fidelity optimization with space mapping variables
mpirun -np 2 \\

/home/jpcastr/APPSPACK/test/appspack-4.0alpha-dev/src/appspack_mpi \\
appsinput.apps > appsinput.out

#place low fidelity optimum result within file
java ParseFileToAprepro apps_out appsinput.out \\

$num_high_var $high_var_tag_string lowfi_optimum_vars \\
$response_tag $number_responses

breaksw #apps

endsw # switch($opt_strategy)

# move optimum aprepro file up before cleaning up this directory
cp lowfi_optimum_vars ../.
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cd ..

#---------------
# Write out to APPSPACK function output file
#---------------

# place all responses in a single file (response.txt)
@ iv = 0
while ($iv < $num_high_var)

@ var_index = $iv + $start_high_index
m4 -DVAR_FILE="lowfi_optimum_vars" \\

-DVAR_NAME=$argv[$var_index] \\
response_template.txt > temp_response_$iv.txt

aprepro -qW temp_response_$iv.txt temp_response_$iv.app
perl -ne ’{print unless /ˆ\s*$/o}’ temp_response_$iv.app \\

> temp_response_$iv.out
cat temp_response_$iv.out >>! response.txt
rm temp_response*.*
@ iv++

end

#
# CREATE NEW ARGV{1} WITH NEW VALUES
#
echo $num_high_var > num_var.txt
echo $message > message.txt
cat num_var.txt response.txt message.txt > $argv[1]
cp $argv[1] ../.

cp space_mapping_vars ..

# move out of inner loop directory
cd ..

#-----------------
# create a matlab friendly file with space_mapping_vars
#-----------------

@ j=0
while ($j < $num_space_param)

@ varindex = $j + $start_space_param_index
m4 -DRUN_TAG="$num" -DSPACE_PARAM_TAG="$argv[$varindex]" \\

matlab_template.in > temp_matlab.in
aprepro -qW temp_matlab.in | perl -ne \\

’{print unless /ˆ\s*$/o}’ > temp_matlab.out
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cat temp_matlab.out >> matlab_space_map_vars.m
rm temp_matlab.in temp_matlab.out
@ j++

end
rm space_mapping_vars

# make call to high fidelity model

high_fi_script $argv[1] $argv[2] $argv[3] $message $fidelity \\
$num_high_var $high_var_tag_string

# -------------
# CLEANUP
# -------------

rm -rf innerloop.$num

END mfo script
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